Report RESERVES AUDIT OF PROVED RESERVES AND ASSOCIATED INCOME FOR DEAL ASSETS, MOUNTRAIL COUNTY, ND AS OF OCTOBER 1, 2021 **Zephyr Energy plc** November 19, 2021 Dr. Gregor Maxwell Head of Subsurface First Floor, Newmarket House Market Street Newbury, Berks RG14 5DP, UK RE: Reserves Audit of Proved Reserves and Associated Income for Deal Assets, Mountrail County, ND, as of October 1, 2021 Dear Dr. Maxwell: At the request of Zephyr Energy plc ("Zephyr" or the "Company"), Sproule Incorporated (Sproule) has audited the Proved, crude oil, natural gas, and natural gas liquids (NGL) reserves and the associated future net revenue attributable to certain properties ("Deal Assets") Zephyr is acquiring located in the Williston Basin, Mountrail County, North Dakota as of October 1, 2021. The scope and nature of Sproule's work is a review and examination of the specified reserves information for the purpose of expressing an opinion as to whether such reserves volumes, in the aggregate, are reasonable and have been estimated and presented in conformity with generally accepted petroleum engineering and evaluation principles. The Sproule examination included such tests and procedures as considered necessary under the circumstances to render the opinion set forth herein. Sproule conducted certain tests and spot checks to confirm the adherence to the Society of Petroleum Engineers (SPE) Petroleum Resources Management System (PRMS) reserves reporting requirements and that the data flowing into the Zephyr reserves determination system were consistent with available records provided by Zephyr. A copy of the PRMS guidance is attached as Appendix C. The Deal Assets covered in this audit includes 163 proved developed producing (PDP) wells, 5 proved non-producing (PNP) wells, 13 drilled uncompleted (DUC) wells, 47 proved undeveloped (PUD) locations, and 16 after payout (APO) wells for a total of 244 wells. Table 1 below summarizes the Zephyr assets in this audit. **Table 1: Summary of Assets** | Asset | Operator | Interest | Status | Total
Lease
Area,
acres | Comments | |--------------------------------------|-------------------------------------|---------------------------------|-----------|----------------------------------|---| | Mountrail
County, North
Dakota | Whiting
Petroleum
Corporation | 5.88% WI
and
4.85%
NRI | Producing | 1,960 | Production from Bakken
and Three Forks
formations at net 685
boepd | Net reserves, costs and revenues are those attributable to Zephyr, based on ownership, operating information, and other economic parameters provided by Zephyr. Future net revenue and discounted present value are on a before federal income tax (BFIT) basis. The results are summarized below by reserve status, with an effective date of October 1, 2021, in Table 2. Table 2: Reserves Summary, Effective October 1, 2021 | Reserves
Category | Well
Count | Net Oil
Reserves
(Mbbl) | Net Gas
Reserves
(MMcf) | Net NGL
Reserves
(Mbbl) | Discounted
Cash Flow
10% (M\$) | |----------------------|---------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------------| | PDP | 179¹ | 1,097 | 1,823 | 281 | 30,458 | | PNP | 5 | 48 | 71 | 11 | 1,213 | | DUC/PUD ¹ | 13 | 325 | 372 | 57 | 7,504 | | PUD | 47 | 415 | 473 | 73 | 7,173 | | Total | 244 | 1,885 | 2,739 | 423 | 46,349 | ^{*}Note: Some columns may not add due to rounding ^{1.} PDP well count includes 163 PDP wells and 16 After Payout (APO) wells. The APO are classified as proved developed producing, but do not convert to a paying interest. Only the abandonment costs have been included for these wells. ^{2.} Drilled Uncompleted (DUC) wells have been classified as proved undeveloped (PUD) and are drilled wells with a range of remaining capital costs required to complete and bring on production. These have all been classified as PUD at the request of the Company, for simplicity Annual cash flow summaries by Reserve category and a oneline summary of all properties are included in Appendix A. It should be understood that the Sproule reserves audit does not constitute a complete reserve study of the oil and gas properties of Zephyr. In the conduct of our audit, Sproule accepted and did not independently verify the accuracy and completeness of information and data furnished by Zephyr with respect to ownership interests, oil and gas production, historical costs of operation and development, development plans, product prices and energy content, market differentials, agreements relating to current and future operations and sales of production, and capital costs. We have specifically identified the information and data upon which we did rely on for this audit. If, during our examination, something came to our attention which brought into question the validity or sufficiency of any of such information or data, we did not rely on such information or data until we had satisfactorily resolved our questions relating thereto or independently verified such information or data. Sproule is an independent petroleum engineering consultancy comprised of petroleum engineers, geologists, and geoscientists. As an Auditor and Reviewer responsible for preparing this audit report, I meet the requirements of objectivity for Reserve Auditors as set forth in the Standards Pertaining to the Estimating and Auditing of Oil and Gas Reserve Information promulgated by the Society of Petroleum Engineers (SPE). Please be advised that, based upon the foregoing analysis, in Sproule's opinion the above estimates of Zephyr's proved oil, gas, and NGL reserves are, in the aggregate, reasonable and have been prepared in accordance with generally accepted petroleum engineering and evaluation principles as set forth in the SPE Standards Pertaining to the Estimating and Auditing of Oil and Gas Reserve Information. The Zephyr reserves determinations do not contain any significant misrepresentations that would materially change or alter the estimated reserve volumes or values presented in this audit report. The reserve estimates conform to the PRMS reserves regulations and requirements. ### **STATEMENT OF RISK** The accuracy of reserve audits is always subject to uncertainty. However, while these estimates are prepared with reasonable care, unforeseen changes in future well and field performance, the impact of offset drilling, changes in market conditions and sales contracts, along with changes in operating conditions and associated costs may all impact the actual ability to recover the reserves estimated in this report and, subsequently, generate the estimated cash flow. As a result, any use of or reliance on this report needs to recognize such risks and uncertainty, and Sproule makes no warranties concerning the ability to realize stated reserves or future estimated revenue in this report. Neither Sproule nor any of its employees have any interest in the subject properties. Neither the employment to conduct this study nor the compensation for this study was contingent on Sproule's estimates of reserves and future income. This report has been prepared for the sole and exclusive use of Zephyr. Use by other parties, or for purposes other than those expressed by Zephyr, is not authorized without written consent by Sproule. Any third party who receives or views this report may not rely on the report as their sole source of information. Sproule assumes no liability for reliance on this report by anyone other than Zephyr. This report, and its use, remain subject to all the terms and conditions contained in the Master Services Consulting Agreement, including Zephyr's obligation to indemnify Sproule for any actions which may be taken by any third party with respect to this report and Sproule's total aggregate liability in relation to provision of its serves and this report as set out therein. It has been Sproule's pleasure to prepare this audit for Zephyr. If you should have any questions concerning this analysis, please feel free to contact us. Sincerely, Jeffery B. Aldrich, L.P.G. John Seidle, Ph.D., P.E. Senior Geoscientist Senior Petroleum Engineer The following Responsible Member of Sproule Incorporated certifies that our internal quality control process has been completed in accordance with our Professional Practice Management Plan. Meghan Klein, P. Eng. Alec Kovaltchouk, P. Geo. Senior Manager, Engineering VP, Geoscience Sproule # **Certificate of Qualifications** # Jeffrey Aldrich, L.P.G. I, Jeffrey B. Aldrich, Senior Geoscientist of Sproule, 730 17th St., Denver, Colorado, USA, declare the following: - 1. I hold the following degree: - a. B.S. Geology (1977) Vanderbilt University, Nashville, TN, USA - M.S. Geology (1983) Texas A&M University, College Station, Texas, USA - 2. I am a licensed professional: - a. Licensed Professional Geoscientist (P.G.) Louisiana, USA #394 - b. Licensed Professional Geoscientist (P.G.) Texas, USA # 15140 - b. Certified Petroleum Geologist (C.P.G) The American Association of Petroleum Geologists #6254 - 3. I am a member of the following professional organizations: - a. American Association of Petroleum Geologists (AAPG) - b. Society of Petroleum Engineers (SPE) - 4. I am a qualified reserves evaluator and reserves auditor as defined in: - a. the "Canadian Oil and Gas Evaluation Handbook" as promulgated by the Society of Petroleum Evaluation Engineers (Calgary Chapter) and, - b. the "Standards Pertaining to the Estimating and Auditing of Oil and Gas Reserves Information" as promulgated by the Society of Petroleum Engineers and incorporated into the "Petroleum Resource Management System" (SPE-PRMS). - 5. My contribution to the report entitled "Reserves Audit of Proved Reserves and Associated Income for Deal Assets, Mountrail County, ND as of October 1, 2021" is based on my geoscience knowledge
and the data provided to me by the Company, from public sources, and from the non-confidential files of Sproule. - 6. I have no interest, direct or indirect, nor do I expect to receive any interest, direct or indirect, in the properties described in the above-named report or in the securities of Zephyr Energy plc. | _ | | | | |---|-----------------|-----------|--| | | Jeffrey Aldrich | ı, L.P.G. | | # **Certificate of Qualifications** # John Seidle, P.E. I, John Seidle, Senior Reservoir Engineer of Sproule, 730 17th St., Denver, Colorado, USA, declare the following: - 1. I hold the following degrees: - a. B.S. Aeronautical Engineering (1972) University of Colorado, USA - b. M.S. Aeronautical Engineering (1973) Stanford, USA - c. Ph.D. Mechanical Engineering (1981) University of Colorado, USA - 2. I am a registered professional: - a. Professional Registered Engineer (P.E.), Colorado, USA - b. Professional Registered Engineer (P.E.), Oklahoma, USA - c. Professional Registered Engineer (P.E.), Wyoming, USA - 3. I am a member of the following professional organizations: - a. Society of Petroleum Engineers (SPE) - b. Society of Petroleum Evaluation Engineers (SPEE) - 4. I am a qualified reserves evaluator and reserves auditor as defined in: - a. the "Canadian Oil and Gas Evaluation Handbook" as promulgated by the Society of Petroleum Evaluation Engineers (Calgary Chapter) and, - b. the "Standards Pertaining to the Estimating and Auditing of Oil and Gas Reserves Information" as promulgated by the Society of Petroleum Engineers and incorporated into the "Petroleum Resource Management System" (SPE-PRMS). - 5. My contribution to the report entitled "Reserves Audit of Proved Reserves and Associated Income for Deal Assets, Mountrail County, ND as of October 1, 2021" is based on my engineering knowledge and the data provided to me by the Company, from public sources, and from the non-confidential files of Sproule. - 6. I have no interest, direct or indirect, nor do I expect to receive any interest, direct or indirect, in the properties described in the above-named report or in the securities of Zephyr Energy plc. | John Seidle, P.E. | | |-------------------|--| | | | # **Certificate of Qualification** # Meghan M. Klein, P.Eng. - I, Meghan M. Klein, Senior Manager, Engineering of Sproule, 900, 140 Fourth Avenue SW, Calgary, Alberta, declare the following: - 1. I hold the following degree: - a. B.A.Sc. Geological Engineering (2005), University of Waterloo, Waterloo, ON, Canada - 2. I am a registered professional: - a. Professional Engineer (P.Eng.), Province of Alberta, Canada - 3. I am a member of the following professional organizations: - a. Association of Professional Engineers and Geoscientists of Alberta (APEGA) - b. Society of Petroleum Engineers (SPE) - 4. I am a qualified reserves evaluator and reserves auditor as defined in: - a. the "Canadian Oil and Gas Evaluation Handbook" as promulgated by the Society of Petroleum Evaluation Engineers (Calgary Chapter) and, - b. the "Standards Pertaining to the Estimating and Auditing of Oil and Gas Reserves Information" as promulgated by the Society of Petroleum Engineers and incorporated into the "Petroleum Resource Management System" (SPE-PRMS). - 5. My contribution to the report entitled "Reserves Audit of Proved Reserves and Associated Income for Deal Assets, Mountrail County, ND as of October 1, 2021" is based on my engineering knowledge and the data provided to me by the Company, from public sources, and from the non-confidential files of Sproule. - 6. I have no interest, direct or indirect, nor do I expect to receive any interest, direct or indirect, in the properties described in the above-named report or in the securities of Zephyr Energy plc. # **Certificate of Qualification** ### Alec Kovaltchouk, P.Geo. I, Alec Kovaltchouk, VP, Geoscience of Sproule, 900, 140 Fourth Avenue SW, Calgary, Alberta, declare the following: - 1. I hold the following degree: - a. M.Sc. Geochemistry (1981) University of Lviv, Lviv, Ukraine - 2. I am a registered professional: - a. Professional Geoscientist (P.Geo.), Province of Alberta, Canada - 3. I am a member of the following professional organizations: - a. Association of Professional Engineers and Geoscientists of Alberta (APEGA) - b. Canadian Society of Petroleum Geologists (CSPG) - 4. I am a qualified reserves evaluator and reserves auditor as defined in: - a. the "Canadian Oil and Gas Evaluation Handbook" as promulgated by the Society of Petroleum Evaluation Engineers (Calgary Chapter) and, - b. the "Standards Pertaining to the Estimating and Auditing of Oil and Gas Reserves Information" as promulgated by the Society of Petroleum Engineers and incorporated into the "Petroleum Resource Management System" (SPE-PRMS). - 5. My contribution to the report entitled "Reserves Audit of Proved Reserves and Associated Income for Deal Assets, Mountrail County, ND as of October 1, 2021" is based on my geological knowledge and the data provided to me by the Company, from public sources, and from the non-confidential files of Sproule. - I have no interest, direct or indirect, nor do I expect to receive any interest, direct or indirect, in the properties described in the above-named report or in the securities of Zephyr Energy plc. | Alec Kovaltchouk, P.Geo. | | |--------------------------|--| | | | # **TABLE OF CONTENTS** | Asset Overview | 11 | |--|---------------| | Geologic Audit | 11 | | Undeveloped Locations | 14 | | Forecasts | 15 | | Capital Costs | 15 | | Operating Expenses | 16 | | Hydrocarbon Prices | 16 | | APPENDIX A: One Line Summary and Cashflows | 17 | | APPENDIX B: Abbreviations | 27 | | APPENDIX C: PRMS Guidance | 33 | | | | | TABLE OF FIGURES | | | Figure 1: Location of the Bakken Total Petroleum System (TPS), the Productive (Bakken within the Williston Basin and the Location of the Asset Area, (from USG) Figure 2: Williston Basin Schematic Stratigraphy and Location (provided by Zeph Figure 3: Asset Type Wells Showing the Two Targeted Reservoirs (provided by Zeph Figure 3: Asset Type Wells Showing the Two Targeted Reservoirs) | S)12
yr)13 | | TABLE OF TABLES | | | Table 1: Summary of Assets | | | Table 2: Reserves Summary, Effective October 1, 2021 | | | Table 3: Well Gross Capital Costs by Reserve Category, M\$ | | | Table 4: Oil & Gas Price Forecast | 16 | # **ASSET OVERVIEW** Zephyr has working interest in a leasehold net acreage of 1,960 acres, located in Mountrail County and operated by Whiting Petroleum Corporation. The acreage includes 163 PDP wells (67%), 5 PNP wells (2%), 13 DUC/PUD wells (5%), 47 PUD locations (19%), and 16 APO/PDP wells (7%). Of the 244 wells, 176 of them (72%) target the Middle Bakken Formation and 68 of them (28%) target the Three Forks Formation. Lease details provided by Zephyr appeared reasonable and were accepted without further review. The average working interest (WI) for all wells is 5.88% and the average net royalty interest (NRI) for all wells is 4.85%. For the PDP, DUC/PUD, and PNP wells, the WI ranges from 0.14193% to 28.218799% and the RI ranges from 0.11782% to 24.498929%. For the PUD wells, the WI ranges from 0.13756% to 13.412599% and the RI ranges from 0.11463% to 11.06883%. In terms of future development, the operator plans to return all 5 PNP wells to production in November 2021, complete the 13 DUC/PUD wells and turn them to production by April 2022, and develop the 47 PUD wells by 2024. Specifically, the operator plans to develop 4 PUD wells in 2021, 20 in 2022, 13 in 2023, and the final 10 PUD wells in 2024. Thus, all PNP wells, DUC wells, and PUD wells will be developed by 2026, within the 5-year window allowed for such locations. No value has been assigned to the APO/PDP entities for this audit as the wells do not revert to a paying interest. Abandonment for these locations has been included in the PDP economics. # **GEOLOGIC AUDIT** The assets are located in Mountrail County, ND within the Williston Basin (Figure 1). The Williston Basin itself is a large intra-cratonic basin and the Middle Bakken and Three Forks target reservoirs are late Devonian in age (Figures 2 and 3). These formations were deposited in a basin that displayed relatively even subsidence rates at the time of deposition. The asset area displays limited structural complexity. The Middle Bakken reservoir consists of a dolomitic sandstones and siltstones and is largely homogenous. In the asset area, it is around 40-50 feet thick with average porosities of 6 percent and water saturations of 30-40 percent. The Three Forks reservoir is thinner in this location (less than 40 feet) than the Middle Bakken reservoir and predominantly consists of dolomitic siltstones interbedded with mudstones. It has similar porosities as the Middle Bakken reservoir, but is more heterogenous. Both reservoirs were deposited in shallow marine tidal depositional environments. The reservoir quality for both reservoirs is poor (only up to 0.2 mD) and as a result, the reservoir has to be developed by horizontal wells that are hydraulically stimulated to deliver economical flow rates and recoveries. The Three Forks reservoir has a higher water saturation than the Middle Bakken reservoir and development wells typically have higher produced water cuts. The reservoir is typically over pressured at initial conditions (approximately 0.7psi/ft) and reservoir fluids are light oils (40-44 API) which have initial gas oil ratios less than 1,000 scf/bbl. The fluids are sourced from the bounding Upper and Lower Bakken shales which are highly productive source rocks.
Migration distances from these source rocks is likely to be very limited. The initial Williston Basin discovery wells were made in the 1950's but significant drilling of the tight oil 'Bakken' play did not begin in earnest until 2008. Over 4,000 horizontal wells have been drilled in Mountrail County in the intervening period and the area is still actively drilled today. At the beginning of 2021, the horizontal wells in Mountrail County, targeting the Bakken play, had produced 900 MMbbl of oil and 1 TCF of gas from horizontal wells in the Middle Bakken and the deeper Three Forks reservoirs. The target assets form a small subset of these development wells and the potential development locations represent some of the remaining infill drilling locations of the mature Sanish Field. Figure 1: Location of the Bakken Total Petroleum System (TPS), the Productive Outline of Bakken within the Williston Basin and the Location of the Asset Area, (from USGS) Figure 2: Williston Basin Schematic Stratigraphy and Location (provided by Zephyr) Figure 3: Asset Type Wells Showing the Two Targeted Reservoirs (provided by Zephyr) Since the initial horizontal drilling began in the basin, the completion technology applied to stimulate these wells has developed considerably. In the asset area, wells typically have approximately10,000 feet horizontal sections that host up to 50 separate fracture stages. Fluid volumes pumped to create the artificial fracture network can range from 200,000 to 400,000 barrels of water with 8 million lbs. of sand used as proppant to maintain fracture aperture. These are common completion styles for the asset area. The wells are drilled commonly more than 600 feet apart within unitized Drilling Spacing Units (DSUs) that allow for efficient field development across diverse lease holdings. The DSUs that give approval for well spacing and permits to drill are approved by the state regulatory authority, the North Dakota Oil and Gas Division of the Department of Mineral Resources. Sproule reviewed the Zephyr's geologic work for best practices and conformity with published industry information on the Middle Bakken and did not build an independent geologic model, review formation picks on logs, review seismic, or create maps. All information provided by Zephyr was verified by Sproule using publicly available data and confirmed for reasonableness. Based on the analysis of the data provided by Zephyr, it is Sproule's opinion that the parameters and geologic cut-offs used for the Tiers are within reason. In addition to this analysis, Sproule investigated future development locations (PUD's) regarding the geologic tiers and reservoir quality. Sproule concurs that these locations were picked within reason and used the aforementioned petrophysical cut-offs and parameters. # **UNDEVELOPED LOCATIONS** Oil production forecasts for undeveloped locations and drilled uncompleted (DUC) wells were generated with type wells constructed from analog wells in this area. Technically recoverable oil volumes for these wells were estimated with decline curve analysis and normalized by lateral length. Normalized oil recovery volumes were then ranked and P90, P50, and P10 values determined. Multiplying these values by the planned lateral length of a given PUD yielded the three technically recoverable oil volumes for the location. Combining the average Arps decline rate and "b" value from the analog wells and a terminal decline rate of 8 %/yr, the initial Arps rate was adjusted to obtain the P90, P50, and P10 recoverable oil volumes for a given location. Gas and water production were forecasted from the oil type wells and specified GOR (gas-oil ratio) and WOR (water-oil ratio) profiles. Natural gas liquid (NGL) production was forecasted using the gas profile and a yield of 138 bbl/mmcf flat. After reviewing this process estimating production from undeveloped locations, Sproule finds Zephyr's methodology and values reasonable. The current operator's plans for future well locations were reviewed, and they meet general industry standards. There may be a limited number of future PUD wells that perform less optimally than forecasted; however, the economic impact of this is deemed to be de minimis to this evaluation. # **FORECASTS** The producing (PDP) well forecasts and PNP well forecasts were generated using decline curve analysis (DCA), with the oil and gas phases forecasted separately for each well. Zephyr imposed a terminal decline rate of 8 %/yr on the declines. The PNP forecast was slipped in time to coincide with the scheduled return to production of the given well. Water forecasts were also developed for each well as part of calculating water operating expenses for the economic evaluation. NGL yields were estimated using the gas profile and a yield of 138 bbl/MMcf flat. The forecast parameters were deemed to be reasonable. # **CAPITAL COSTS** Capital costs included drilling and completion of the wells and artificial lift. Wells in this region of the Williston basin typically flow naturally for a brief period then ESP's are used to lift the fluids. As fluid production declines, typically after a few months to a year, the ESP's are replaced with rod pumps for the duration of the well lifetime. Capital costs for the different Reserves categories are summarized in Table 3 below. The capital allocation after 18 months captures the artificial lift costs. Capital costs were not escalated until 2025. Beginning in 2025, capital costs were escalated at a rate of 2%/yr until they had doubled, in 2059, after which time they were held constant for the duration of the project life. The forecast capital costs were deemed to be reasonable. Table 3: Well Gross Capital Costs by Reserve Category, M\$ | Investment | PDP | PNP | PUD-DUC | PUD | PDP-APO | |--------------------------------|-----|-----|-------------|-------------|---------| | Drill & Completion | 0 | 0 | 5226 - 7550 | 4900 - 7550 | 0 | | Artificial lift – 18
months | 300 | 100 | 191 - 421 | 300 - 421 | 0 | | Abandonment | 160 | 160 | 160 | 160 | 160 | # OPERATING EXPENSES Well operating expenses have fixed and variable components. Fixed OPEX varies by Reserve category. Gross operating expenses for the PDP's varies between 3,400 and 26,200 \$/well/month, for the PNP's between 4,300 and 11,600 \$/well/month, the APO/PDPs are a constant 7,900 \$/well/month. The DUC/PUD gross OPEX stairsteps down in five annual intervals from an initial OPEX of 25,000 \$/well/month to 20,000 then 15,000, followed by 12,700, before reaching the final OPEX of 7,900 \$/well/month for the duration of the well's life. Variable operating expenses include a gross gas OPEX of 4.27 \$/mcf and a gross water OPEX of 1.45 \$/bbl. Similar to capital costs, operating expenses were not escalated until 2025 at which time they were escalated at a rate of 2%/yr until doubling in 2059. Operating expenses were held constant thereafter for the life of the project life. Severance tax on oil and NGL production is initially 10%, dropping to 5% once oil and NGL production falls below 28 or 32 bpd depending on the well. Gas severance tax is 0.0522 \$/mcf flat. The forecast operating expenses were deemed to be reasonable. # **HYDROCARBON PRICES** Crude oil, natural gas, and NGL prices utilized in this audit are summarized in Table 4 below. The NGL price is 40% of the oil price. No differentials were applied to gas and NGL prices. The gas BTU factor is 0.976, shrinkage is 10.6%. Table 4: Oil & Gas Price Forecast | Year | Oil (\$/bbl) | Oil Diff
(\$/bbl) | Oil Realized
(\$/bbl) | Gas
(\$/mmbtu) | NGL
(\$/bbl) | | |------|--------------|----------------------|--------------------------|-------------------|-----------------|--| | 2021 | 76.00 | -6.50 | 69.50 | 5.00 | 30.40 | | | 2022 | 71.00 | -6.50 | 64.50 | 4.00 | 28.40 | | | 2023 | 68.00 | -6.50 | 61.50 | 3.50 | 27.20 | | | 2024 | 66.00 | -6.50 | 59.50 | 3.25 | 26.40 | | Escalated at 2%/yr thereafter until price doubles, then held flat APPENDIX A: ONE LINE SUMMARY AND **CASHFLOWS** | Well | Res Cat | Reservoir | Location | wı | NRI | Life
(Years) | Start
Date | Gross Oil
(Mbbl) | Gross Gas
(MMCF) | Gross NGL
(Mbbl) | | Net Gas
(MMCF) | Net NGL
(Mbbl) | Net Revenue
(M\$) | Taxes
(M\$) | Operating
Expense
(M\$) | Investment
and P&A
Cost (M\$) | Undisc. NCF
(M\$) | Discounted
NCF @ 10%
(M\$) | Ultimate
Oil (Mbbl) | Ultimate
Gas (MMCF) | Cum Oil
(Mbbl) | Cum Gas
(MMCF) | |--|------------|-----------------------|--|----------------|----------------|-----------------|--------------------|---------------------|---------------------|---------------------|--------------|-------------------|-------------------|----------------------|----------------|-------------------------------|-------------------------------------|----------------------|----------------------------------|------------------------|------------------------|-------------------|-------------------| | PROVED DEVELOPED PRODUCING | ABBOTT 11-18H | PDP | BAKKEN | 18 153N 91W | 0.004 | 0.003 | | 01/2021 | 56.4 | 75.7 | 10.4 | 0.2 | 0.2 | 0.0 | 14.6 | 0.7 | 8.3 | 0.8 | 4.8 | 3.6 | 574.3 | 79.6 | 517.8 | 3.9 | | ANDERSON 11-7-2H
ANDERSON 11-7-2TFH | PDP
PDP | BAKKEN
THREE FORKS | 7-18 154N 92W
7-18 154N 92W | 0.219
0.219 | 0.177
0.177 | 20.92
23.92 | 01/2021
10/2020 | 135.7
121.9 | 314.6
271.8 | 43.4
37.5 | 24.1
21.6 | 49.9
43.1 | 7.7
6.7 | 2,027.6
1,836.0 | 125.3
104.8 | 862.9
761.3 | 50.0
53.0 | | 687.7
603.7 | 308.8
224.5 | 341.4
292.0 | 173.1
102.6 | 26.8
20.3 | | ANDERSON 11-7-21FH
ANDERSON 11-7TFH | PDP | THREE FORKS | 7-18 154N 92W
7 154N 92W | 0.219 | 0.177 | | 01/2020 | 31.0 | 30.6 | 4.2 | 5.5 | 43.1 | | 387.6 | 104.8 | 225.3 | 40.2 | 103.4 | 99.9 |
238.0 | 33.5 | 207.0 | 20.3 | | ANDERSON 21-7HH | PDP | BAKKEN | 7 154N 92W | 0.219 | 0.177 | | 01/2021 | 101.4 | 92.6 | 12.8 | 18.0 | 14.7 | 2.3 | 1.331.6 | 68.0 | 605.7 | 49.0 | 609.0 | 404.7 | 426.0 | 96.8 | 324.6 | 4.2 | | ANDERSON 41-7H | PDP | BAKKEN | 7 154N 92W | 0.219 | 0.177 | | 01/2021 | 233.2 | 262.4 | 36.2 | 41.4 | 41.6 | | 3,270.3 | 237.2 | 1,054.9 | 58.5 | 1,919.6 | 1,058.5 | 518.8 | 273.4 | 285.6 | 11.0 | | ANDERSON 41-7HU | PDP | BAKKEN | 7-18,8-17 154N 92W | 0.119 | 0.096 | 22.92 | 10/2020 | 165.0 | 331.1 | 45.7 | 15.9 | 28.5 | 4.4 | 1,313.9 | 85.1 | 510.0 | 28.2 | 690.5 | 463.1 | 359.2 | 359.2 | 194.2 | 28.2 | | ANDERSON 41-7TFH | PDP | THREE FORKS | 7-18 154N 92W | 0.219 | 0.177 | 26.83 | 01/2021 | 173.7 | 139.5 | 19.2 | 30.8 | 22.1 | 3.4 | 2,302.1 | 154.7 | 691.1 | 56.3 | 1,400.1 | 896.0 | 353.6 | 152.0 | 179.9 | 12.5 | | ARNDT FEDERAL 34-35H | PDP | BAKKEN | 35 154N 91W | 0.134 | 0.111 | | 01/2021 | 49.9 | 555.2 | 76.6 | 5.5 | 54.9 | 8.5 | 813.7 | 33.6 | 488.8 | 28.9 | 262.4 | 194.3 | 450.7 | 593.3 | 400.8 | 38.1 | | BEHR 11-34H | PDP | BAKKEN | 34 154N 91W | 0.134 | 0.111 | | 01/2021 | 129.3 | 567.4 | 78.3 | 14.3 | 56.1 | 8.7 | 1,484.4 | 75.9 | 579.1 | 35.9 | 793.4 | 437.2 | 1,257.8 | 590.9 | 1,128.5 | 23.5 | | BENDER 14-6H
BRAAFLAT 11-11H | PDP
PDP | BAKKEN
BAKKEN | 6 153N 92W
11 153N 91W | 0.188
0.004 | 0.152 | | 04/2020
01/2021 | 76.9
160.5 | 80.3
372.8 | 11.1
51.4 | 11.7
0.5 | 10.9
1.1 | 1.7
0.2 | 884.7
45.6 | 42.8
2.7 | 376.2
15.6 | 43.7
1.1 | 422.0
26.2 | 280.1
14.2 | 206.2
1,003.4 | 83.3
386.9 | 129.3
842.9 | 3.0
14.2 | | BRAAFLAT 21-11TFH | PDP | THREE FORKS | 11 153N 91W
11 153N 91W | 0.004 | 0.003 | | 01/2021 | 74.1 | 83.1 | 11.5 | 0.3 | 0.2 | 0.2 | 18.3 | 0.9 | 7.6 | 0.9 | 8.8 | 5.7 | 412.0 | 86.5 | 337.9 | 3.4 | | BROOKBANK STATE 41-16XH | PDP | BAKKEN | 16 154N 92W | 0.020 | 0.016 | | 01/2021 | 113.1 | 121.7 | 16.8 | 1.9 | 1.8 | 0.3 | 138.1 | 9.0 | 55.6 | 4.5 | 69.0 | 50.3 | 483.4 | 132.1 | 370.3 | 10.5 | | BROOKBANK STATE 42-16TFX | PDP | THREE FORKS | 16 154N 92W | 0.020 | 0.016 | 27.00 | 01/2021 | 152.0 | 140.0 | 19.3 | 2.5 | 2.1 | 0.3 | 192.3 | 11.9 | 64.4 | 5.2 | 110.7 | 63.3 | 464.6 | 151.3 | 312.6 | 11.3 | | BROOKBANK STATE 44-9TFX | PDP | THREE FORKS | 9 154N 92W | 0.020 | 0.016 | 22.08 | 01/2021 | 120.6 | 144.4 | 19.9 | 2.0 | 2.1 | 0.3 | 153.3 | 8.5 | 67.3 | 4.7 | 72.7 | 45.5 | 328.9 | 150.5 | 208.3 | 6.1 | | BROWN 41-28-2XH | PDP | BAKKEN | 28 154N 91W | 0.033 | 0.028 | | 01/2021 | 232.7 | 325.8 | 45.0 | 6.4 | 8.0 | | 530.4 | 35.2 | 134.6 | 10.0 | | 176.4 | 496.4 | 338.5 | 263.7 | 12.7 | | BROWN 41-28XH | PDP | BAKKEN | 28 154N 91W | 0.033 | 0.028 | | 01/2021 | 32.9 | 33.0 | 4.6 | 0.9 | 0.8 | | 65.9 | 3.2 | 33.3 | 6.7 | 22.7 | 18.6 | 446.3 | 36.3 | 413.4 | 3.3 | | BROWN 42-28XH
CARKUFF 13-14H | PDP
PDP | BAKKEN
BAKKEN | 28 154N 91W
14 154N 92W | 0.033 | 0.028 | | 01/2021 01/2021 | 68.8
79.1 | 123.6
64.8 | 17.1
8.9 | 1.9
19.4 | 3.0
14.2 | 0.5
2.2 | 149.2
1.414.9 | 7.8
69.6 | 60.9
628.2 | 7.1
64.2 | | 56.8
450.3 | 447.3
265.8 | 135.6
64.8 | 378.5
186.7 | 11.9
0.0 | | CARL KANNIANEN 13-7XH | PDP | BAKKEN | 7 153N 91W | 0.292 | 0.243 | | 10/2021 | 74.7 | 489.9 | 67.6 | 0.1 | 0.8 | | 1,414.9 | 0.6 | 8.6 | 0.5 | 653.0
5.1 | 3.5 | 289.9 | 513.4 | 215.2 | 23.5 | | CARL KANNIANEN 21-4H | PDP | BAKKEN | 4 153N 91W | 0.010 | 0.002 | | 01/2021 | 76.8 | 383.4 | 52.9 | 0.6 | 2.8 | | 66.0 | 2.9 | 30.0 | 2.3 | 30.8 | 19.1 | 442.2 | 401.1 | 365.4 | 17.7 | | CARL KANNIANEN 24-33H | PDP | BAKKEN | 33 154N 91W | 0.020 | 0.017 | | 01/2021 | 30.9 | 93.6 | 12.9 | 0.5 | 1.4 | | 45.3 | 2.1 | 23.7 | 3.7 | 15.7 | 14.4 | 269.0 | 104.4 | 238.1 | 10.8 | | CURT BRAAFLAT 11-11H | PDP | BAKKEN | 11 153N 91W | 0.004 | 0.003 | | 01/2021 | 137.2 | 318.3 | 43.9 | 0.4 | 0.9 | | 38.8 | 2.0 | 13.1 | 1.0 | 22.6 | 12.7 | 502.2 | 332.1 | 365.0 | 13.8 | | DARYL LOCKEN 21-22H | PDP | BAKKEN | 22 153N 91W | 0.006 | 0.005 | | 01/2021 | 117.8 | 206.0 | 28.4 | 0.6 | 1.0 | | 50.0 | 2.9 | 16.6 | 1.5 | 28.9 | 18.1 | 661.9 | 218.6 | 544.1 | 12.7 | | DEAL 43-28TFH | PDP | THREE FORKS | 28 154N 91W | 0.066 | 0.055 | | 01/2021 | 76.3 | 118.0 | 16.3 | 4.2 | 5.8 | 0.9 | 328.9 | 15.7 | 160.2 | 14.5 | 138.5 | 95.3 | 258.0 | 123.2 | 181.6 | 5.3 | | DOMASKIN 21-20HU | PDP | BAKKEN | 17-18 / 19-20 154N-92W | 0.078 | 0.063 | | 01/2021 | 104.3 | 246.3 | 34.0 | 6.6 | 13.9 | | 549.6 | 31.7 | 278.7 | 17.0 | 222.1 | 157.4 | 241.1 | 266.8 | 136.9 | 20.5 | | DOMASKIN 24-17TFHU
DOMASKIN 31-20HU | PDP
PDP | THREE FORKS
BAKKEN | 17-18 / 19-20 154N-92W
16-17 / 20-21 154N-92W | 0.078
0.015 | 0.063 | | 10/2020 | 81.5
103.6 | 130.5
240.0 | 18.0
33.1 | 5.1
1.3 | 7.3
2.6 | 1.1
0.4 | 395.8
105.2 | 22.3
6.6 | 200.9
45.3 | 16.1
3.2 | 156.6
50.0 | 117.8
38.6 | 165.8
222.5 | 143.0
267.7 | 84.4
118.9 | 12.5
27.8 | | DOMASKIN 34-17TFHU | PDP | THREE FORKS | 16-17 / 20-21 154N-92W
16-17 / 20-21 154N-92W | 0.015 | 0.012 | | 01/2020 | 80.1 | 240.0 | 33.4 | 1.0 | 2.0 | 0.4 | 86.1 | 4.8 | 45.7 | 3.2 | 32.4 | 25.4 | 205.1 | 267.7 | 125.0 | 26.1 | | FLADELAND 11-10H | PDP | BAKKEN | 10 154N 92W | 0.107 | 0.012 | | 01/2021 | 94.9 | 210.1 | 29.0 | 8.3 | 16.4 | | 698.5 | 32.8 | 317.8 | 24.4 | 323.5 | 209.3 | 513.8 | 220.1 | 418.9 | 10.0 | | FLADELAND 12-10H | PDP | BAKKEN | 10 154N 92W | 0.107 | 0.087 | | 11/2021 | 119.4 | 76.0 | 10.5 | 10.4 | 5.9 | | 767.7 | 42.7 | 278.0 | 25.9 | 421.1 | 253.6 | 633.6 | 76.0 | 514.3 | 0.0 | | FLADELAND 12-18H | PDP | BAKKEN | 18 153N 91W | 0.004 | 0.003 | | 01/2021 | 72.0 | 340.5 | 47.0 | 0.2 | 1.0 | | 25.5 | 1.1 | 13.4 | 0.9 | 10.0 | 6.7 | 585.8 | 355.5 | 513.9 | 15.0 | | FLADELAND 12-20TFH | PDP | THREE FORKS | 20 153N 91W | 0.005 | 0.004 | | 01/2021 | 38.7 | 27.8 | 3.8 | 0.2 | 0.1 | | 11.6 | 0.6 | 6.3 | 1.0 | 3.8 | 3.2 | 313.0 | 29.6 | 274.3 | 1.8 | | FLADELAND 13-10H | PDP | BAKKEN | 10 154N 92W | 0.107 | 0.087 | | 01/2021 | 104.2 | 64.8 | 8.9 | 9.1 | 5.1 | 0.8 | 667.9 | 33.0 | 247.0 | 25.9 | 362.1 | 224.5 | 322.4 | 67.6 | 218.2 | 2.7 | | FLADELAND 13-10HU
FLADELAND 13-10TFH | PDP
PDP | BAKKEN
THREE FORKS | 15-16/(S/2) 9-10 154N-92W
10-11 154N 92W | 0.030 | 0.024 | | 01/2021 | 176.6 | 241.8 | 33.4 | 4.3 | 5.2 | | 331.4 | 22.7
254.8 | 122.0 | 7.0 | | 121.7 | 426.0
595.0 | 267.6
897.5 | 249.4 | 25.8 | | FLADELAND 13-101FH
FLADELAND 13-18TFH | PDP | THREE FORKS | 10-11 154N 92W
18 153N 91W | 0.107 | 0.087 | | 01/2020 | 436.5
68.8 | 840.5
87.8 | 116.0
12.1 | 38.1
0.2 | 65.6
0.3 | 10.1
0.0 | 3,267.4
18.5 | 254.8 | 951.6
7.9 | 32.2
1.0 | 2,028.9
8.7 | 1,131.3
5.7 | 253.5 | 897.5
91.7 | 158.5
184.6 | 57.0
3.8 | | FLADELAND 13-181711 | PDP | BAKKEN | 18 153N 91W | 0.004 | 0.003 | | 01/2021 | 76.2 | 331.7 | 45.8 | 0.2 | 1.0 | | 26.6 | 1.2 | 13.2 | 1.0 | 11.2 | 7.2 | 362.3 | 345.4 | 286.0 | 13.8 | | FLADELAND 41-9H | PDP | BAKKEN | 9 154N 92W | 0.010 | 0.008 | | 01/2021 | 42.0 | 26.7 | 3.7 | 0.3 | 0.2 | | 23.9 | 1.2 | 12.2 | 2.0 | | 7.4 | 284.3 | 28.6 | 242.3 | 1.9 | | FLADELAND 42-9TFH | PDP | THREE FORKS | 9 154N 92W | 0.011 | 0.009 | | 01/2021 | 145.1 | 125.5 | 17.3 | 1.3 | 1.0 | | 100.9 | 5.8 | 40.0 | 2.8 | 52.3 | 31.7 | 301.9 | 131.0 | 156.8 | 5.5 | | FLADELAND 43-9H | PDP | BAKKEN | 9 154N 92W | 0.010 | 0.008 | 3.08 | 01/2021 | 10.4 | 13.8 | 1.9 | 0.1 | 0.1 | 0.0 | 6.3 | 0.3 | 3.7 | 1.6 | 0.7 | 0.9 | 410.8 | 17.3 | 400.4 | 3.5 | | FLADELAND 44-9-2H | PDP | BAKKEN | 8-9 154N-92W | 0.010 | 0.008 | | 01/2021 | 94.0 | 667.2 | 92.1 | 0.8 | 4.9 | | 90.8 | 5.0 | 48.4 | 2.2 | 35.2 | 27.4 | 252.3 | 737.7 | 158.3 | 70.5 | | FLADELAND 44-9-3H | PDP | BAKKEN | 8-9 154N-92W | 0.010 | 0.008 | | 01/2021 | 133.0 | 452.4 | 62.4 | 1.1 | 3.3 | | 100.9 | 6.2 | 45.0 | 2.3 | 47.4 | 33.7 | 317.2 | 494.7 | 184.2 | 42.3 | | FLADELAND 44-9H
HANSEN 12-20H | PDP
PDP | BAKKEN
BAKKEN | 9 154N 92W
20 153N 91W | 0.010 | 0.008 | | 01/2021 01/2021 | 2.0
140.9 | 4.6
330.1 | 0.6
45.6 | 0.0 | 0.0
1.3 | | 1.4
53.5 | 0.1
3.0 | 1.0
19.2 | 1.6
1.4 | -1.3
29.9 | -1.2
16.8 | 327.6
701.2 | 7.5
343.4 | 325.6
560.3 | 2.9
13.3 | | HANSEN 12-20H
HANSEN 13-20TEX | PDP | THREE FORKS | 20 153N 91W
20 153N 91W | 0.005 | 0.004 | | 01/2021 | 205.7 | 294.7 | 45.6 | 0.8 | 1.3 | | 53.5
68.6 | 4.8 | 24.7 | 1.4 | 37.9 | 21.2 | 525.1 | 343.4 | 319.4 | 11.4 | | HANSEN 14-20TFX | PDP | THREE FORKS | 20 153N 91W
20 153N 91W | 0.005 | 0.004 | | 01/2021 | 114.6 | 129.3 | 17.8 | 0.5 | 0.5 | 0.2 | 36.8 | 1.9 | 13.6 | 1.3 | 20.0 | 12.0 | 356.7 | 134.8 | 242.2 | 5.4 | | HANSEN 14-20XH | PDP | BAKKEN | 20 153N 91W | 0.005 | 0.004 | | 01/2021 | 195.6 | 472.4 | 65.2 | 0.8 | 1.7 | | 71.8 | 4.7 | 25.3 | 1.4 | 40.5 | 22.0 | 694.4 | 493.3 | 498.8 | 20.9 | | HANSEN 21-20H | PDP | BAKKEN | 20 153N 91W | 0.005 | 0.004 | 34.58 | 01/2021 | 233.9 | 1,372.5 | 189.4 | 1.0 | 5.3 | 0.8 | 118.3 | 7.1 | 48.9 | 1.6 | 60.8 | 31.1 | 605.7 | 1,421.7 | 371.9 | 49.2 | | HARTSTROM 24-33H | PDP | BAKKEN | 33 154N 91W | 0.020 | 0.017 | 25.33 | 01/2021 | 157.5 | 258.3 | 35.6 | 2.7 | 4.0 | | 219.3 | 14.0 | 73.2 | 5.1 | 127.0 | 81.7 | 398.8 | 276.4 | 241.3 | 18.1 | | HARVEY TTT 41-4HU | PDP | BAKKEN | 4-9 / 3-10 154N-91W | 0.007 | 0.005 | | 01/2021 | 276.0 | 448.1 | 61.8 | 1.5 | 2.2 | 0.3 | 119.1 | 8.9 | 34.9 | 1.7 | 73.5 | 49.3 | 579.0 | 498.3 | 303.0 | 50.3 | | HAUGE 44-36-2HU
HEIPLE 11-3H | PDP
PDP | BAKKEN
BAKKEN | 19-30-31/24-25-36 153N-90-91W
3 154N 92W | 0.031 | 0.025 | | 01/2021 | 177.6
143.3 | 196.1 | 27.1
18.5 | 4.5
16.6 | 4.4
13.9 | 0.7
2.1 | 345.1
1.266.2 | 22.9
76.9 | 94.6
452.0 | 8.4
35.9 | 219.2
701.5 | 137.8
410.6 | 387.7
557.9 | 213.0
139.7 | 210.1 | 16.8
5.5 | | HEIPLE 11-3H
HEIPLE 14-3XH | PDP | BAKKEN
BAKKEN | 3 154N 92W
3 154N 92W | 0.142 | 0.116 | | 01/2021 | 143.3
74.8 | 134.2
73.3 | 18.5 | 16.6
7.6 |
13.9 | 1.0 | 1,266.2
549.7 | 76.9
31.6 | 452.0
260.1 | 35.9
25.7 | 701.5
232.2 | 410.6
180.0 | 557.9
502.4 | 139.7
79.7 | 414.6
427.7 | 5.5
6.3 | | HOLLINGER 11-14TFH | PDP | THREE FORKS | 14 154N 92W | 0.124 | 0.245 | | 01/2021 | 82.2 | 88.9 | 12.3 | 20.1 | 19.5 | | 1,529.7 | 73.9 | 642.7 | 68.1 | 744.9 | 491.2 | 277.3 | 93.2 | 195.1 | 4.3 | | HOLLINGER 21-14TFH | PDP | THREE FORKS | 14 154N 92W | 0.292 | 0.245 | | 01/2021 | 53.8 | 52.8 | 7.3 | 13.2 | 11.6 | | 964.3 | 46.7 | 498.0 | 60.5 | 359.1 | 272.3 | 251.5 | 55.6 | 197.7 | 2.8 | | IVERSON 11-14-2H | PDP | BAKKEN | 14-23 154N-92W | 0.292 | 0.245 | | 10/2020 | 272.7 | 469.3 | 64.8 | 66.8 | 102.8 | 15.9 | 5,471.6 | 396.5 | 1,733.5 | 78.2 | 3,263.4 | 2,048.9 | 460.8 | 515.2 | 188.1 | 45.9 | | IVERSON 11-14-3H | PDP | BAKKEN | 14-23 154N-92W | 0.292 | 0.245 | 24.83 | 01/2021 | 199.4 | 306.9 | 42.4 | 48.8 | 67.2 | 10.4 | 3,885.3 | 268.3 | 1,323.9 | 72.3 | 2,220.8 | 1,468.3 | 360.2 | 337.1 | 160.8 | 30.2 | | IVERSON 11-14-HU | PDP | BAKKEN | 14-15-22-23/N26-27 154N-92W | 0.117 | 0.098 | | 01/2021 | 220.9 | 580.2 | 80.1 | 21.6 | 50.8 | 7.8 | 1,886.3 | 132.3 | 677.8 | 28.9 | 1,047.3 | 715.0 | 371.4 | 641.5 | 150.6 | 61.3 | | IVERSON 21-14H | PDP | BAKKEN | 14 154N 92W | 0.292 | 0.245 | | 01/2021 | 92.9 | 95.1 | 13.1 | 22.7 | 20.8 | 3.2 | 1,728.3 | 83.7 | 693.8 | 69.5 | 881.3 | 563.9 | 577.5 | 99.5 | 484.7 | 4.3 | | IVERSON 31-14TFH
IVERSON 41-14-2HU | PDP
PDP | THREE FORKS | 14 154N 92W
10-11/14-15 154N-92W | 0.000 | 0.011 | | 01/2021 | 87.8 | 53.4
124.8 | 7.4 | 1.0 | 0.5 | 0.1
1.8 | 70.1
989.1 | 3.4 | 0.0
358.5 | 0.0
28.3 | 66.6 | 38.0 | 251.5 | 56.1 | 163.7 | 2.7 | | IVERSON 41-14-2HU
IVERSON 41-14H | PDP | BAKKEN
BAKKEN | 10-11/14-15 154N-92W
14 154N 92W | 0.126 | 0.105 | | 01/2021 | 128.2
89.5 | 124.8
148.4 | 17.2
20.5 | 13.5
21.9 | 11.7
32.5 | 1.8
5.0 | 989.1
1,768.4 | 66.1
84.1 | 358.5
749.7 | 28.3
68.1 | 536.2
866.5 | 398.1
555.7 | 294.9
328.0 | 140.3
155.0 | 166.7
238.5 | 15.5
6.5 | | IVERSON 41-14H
IVERSON 41-14-HU | PDP | BAKKEN | 14 154N 92W
14-23/13-24 154N-92W | 0.292 | 0.245 | | 01/2021 | 434.4 | 786.4 | 108.5 | 53.2 | 32.5
86.1 | 13.3 | 4.456.7 | 348.1 | 1,238.9 | 43.2 | 2,826.5 | 1.694.3 | 609.8 | 866.6 | 238.5
175.4 | 80.2 | | JOHN WILLIAM 14-12HU | PDP | BAKKEN | 2-11/1-12 154N-92W | 0.062 | 0.122 | | 10/2021 | 257.2 | 368.1 | 50.8 | 13.0 | 16.7 | 2.6 | 1,031.9 | 75.4 | 308.7 | 16.0 | 631.7 | 414.8 | 524.0 | 409.7 | 266.8 | 41.6 | | KANNIANEN 11-4H | PDP | BAKKEN | 4 153N 91W | 0.010 | 0.008 | | 01/2021 | 98.2 | 438.4 | 60.5 | 0.8 | 3.2 | 0.5 | 82.4 | 3.7 | 35.5 | 2.5 | 40.7 | 24.1 | 995.1 | 456.8 | 896.9 | 18.4 | | KANNIANEN 44-33H | PDP | BAKKEN | 33 154N 91W | 0.020 | 0.017 | 26.67 | 01/2021 | 129.6 | 226.5 | 31.3 | 2.2 | 3.5 | 0.5 | 185.7 | 10.2 | 67.6 | 5.2 | 102.6 | 59.4 | 852.0 | 235.6 | 722.4 | 9.1 | | KERNAN 12-10TFH | PDP | THREE FORKS | 10 154N 92W | 0.107 | 0.087 | | 01/2021 | 65.4 | 73.5 | 10.1 | 5.7 | 5.7 | 0.9 | 420.6 | 20.3 | 227.7 | 21.6 | 150.9 | 115.5 | 206.3 | 77.7 | 140.9 | 4.2 | | KINNOIN 11-14H | PDP | BAKKEN | 14 154N 91W | 0.019 | 0.015 | | 01/2021 | 28.4 | 94.4 | 13.0 | 0.4 | 1.3 | 0.2 | 38.3 | 1.7 | 19.5 | 3.6 | 13.4 | 12.7 | 829.1 | 108.9 | 800.7 | 14.5 | | KINNOIN 21-14H | PDP | BAKKEN | 14 154N 91W | 0.019 | 0.015 | 24.17 | 01/2021 | 100.9 | 427.6 | 59.0 | 1.6 | 5.9 | 0.9 | 156.0 | 8.0 | 70.5 | 4.7 | 72.8 | 46.8 | 754.1 | 451.4 | 653.2 | 23.8 | | | | | | | | | | | _ 10, 201 | | | | | | | | | | | | | | |---|------------|-----------------------|--|-------|-------|--------------------------------|---------------------|----------------|----------------|---------------|---------------|---------------|---------------------|--------------|----------------|-------------------|----------------|----------------|---------------------|--------------------|-----------------|---------------| | | | | | | | | | | | | | | | _ | | Investment | | Discounted | | | | | | NA/-11 | D C-4 | B | l M | wı | NRI | Life Start
(Years) Date | Gross Oil
(Mbbl) | Gross Gas | | | | | Net Revenue
(MS) | Taxes | Expense | and P&A | Undisc. NCF | 6 | Ultimate | | | Cum Gas | | Well KINNOIN 41-14H | Res Cat | Reservoir
BAKKEN | Location
14 154N 91W | 0.019 | 0.015 | (Years) Date
25.00 01/2021 | (Mbbi)
111.8 | (MMCF)
79.8 | (Mbbl)
11.0 | (Mbbl)
1.7 | (MMCF)
1.1 | (Mbbl)
0.2 | (M\$)
128.1 | (M\$)
7.3 | (M\$)
41.8 | Cost (M\$)
4.8 | (M\$)
74.2 | (M\$)
46.2 | Oil (Mbbl)
522.1 | Gas (MMCF)
83.9 | (Mbbl)
410.4 | (MMCF)
4.1 | | LACEY 11-10H | PDP | BAKKEN | 10 152N 92W | 0.128 | 0.106 | 15.00 01/2021 | 46.6 | 86.4 | 11.0 | 4.9 | 8.2 | 1.3 | 388.5 | 18.4 | 197.7 | 25.9 | 146.6 | 118.2 | 417.9 | 92.7 | 371.3 | 6.3 | | LACEY 12-10H | PDP | BAKKEN | 10 152N 92W | 0.128 | 0.106 | 25.17 01/2021 | 110.7 | 109.7 | 15.1 | 11.7 | 10.4 | 1.6 | 899.2 | 44.9 | 318.1 | 31.5 | 504.7 | 301.8 | 445.6 | 114.2 | 334.9 | 4.5 | | LACEY 12-10TFH | PDP | THREE FORKS | 10 152N 92W | 0.128 | 0.106 | 24.42 01/2021 | 96.8 | 92.1 | 12.7 | 10.2 | 8.7 | 1.3 | 780.5 | 37.9 | 286.8 | 31.5 | 424.3 | 259.6 | 290.6 | 95.8 | 193.8 | 3.7 | | LACEY 14-3-2TFX | PDP | THREE FORKS | 3 152N 92W | 0.129 | 0.108 | 16.75 01/2021 | 47.6 | 43.7 | 6.0 | 5.1 | 4.2 | 0.6 | 373.9 | 18.2 | 189.8 | 27.3 | 138.6 | 104.7 | 208.1 | 46.3 | 160.5 | 2.6 | | LACEY 14-3TFX | PDP | THREE FORKS | 3 152N 92W | 0.129 | 0.108 | 25.75 01/2021 | 110.0 | 128.0 | 17.7 | 11.8 | 12.3 | 1.9 | 926.0 | 45.7 | 342.1 | 32.6 | 505.6 | 301.0 | 355.1 | 134.4 | 245.1 | 6.3 | | LACEY 14-3XH | PDP | BAKKEN | 3 152N 92W | 0.129 | 0.108 | 25.50 01/2021 | 102.7 | 192.4 | 26.5 | 11.0 | 18.5 | 2.9 | 923.0 | 43.7 | 360.3 | 32.6 | 486.4 | 291.9 | 413.1 | 201.7 | 310.4 | 9.3 | | LAHTI 31-15TFX | PDP | | 15 154N 91W | 0.010 | 0.008 | 17.00 01/2021 | 44.1 | 32.8 | 4.5 | 0.3 | 0.2 | 0.0 | 24.4 | 1.2 | 12.0 | 2.0 | 9.2 | 7.0 | 228.2 | 34.4 | 184.1 | 1.6 | | LAHTI 41-15TFX | PDP | THREE FORKS | 15 154N 91W | 0.010 | 0.008 | 17.67 01/2021 | 45.5 | 35.2 | 4.9 | 0.4 | 0.2 | 0.0 | 25.4 | 1.2 | 12.1 | 2.1 | 10.0 | 7.5 | 206.8 | 36.9 | 161.2 | 1.7 | | LEO 12-29H | PDP | BAKKEN | 29 153N 91W | 0.005 | 0.004 | 24.42 01/2021 | 91.2 | 246.3 | 34.0 | 0.4 | 0.9 | 0.1 | 32.1 | 1.5 | 13.3 | 1.2 | 16.1 | 10.2 | 591.2 | 258.6 | 500.1 | 12.3 | | LEO 13-29TFH | PDP | THREE FORKS | 29 153N 91W | 0.005 | 0.004 | 20.58 01/2021 | 93.7 | 89.3 | 12.3 | 0.4 | 0.3 | 0.0 | 27.7 | 1.3 | 11.9 | 1.1 | 13.3 | 8.9 | 285.6 | 93.7 | 191.9 | 4.4 | | LEO 14-29H
LITTLEFIELD 11-29H | PDP
PDP | BAKKEN
BAKKEN | 29 153N 91W
29 153N 91W | 0.005 | 0.004 | 19.92 01/2021
27.92 01/2021 | 60.6
120.9 | 179.2
164.9 | 24.7
22.8 | 0.2
0.5 | 0.6
0.6 | 0.1
0.1 | 21.3
38.5 | 1.0
2.0 | 10.1
11.8 | 1.1
1.2 | 9.2
23.5 | 6.5
13.1 | 313.2
602.6 | 189.4
171.4 | 252.6
481.8 | 10.2
6.5 | | LITTLEFIELD 11-29H | PDP | BAKKEN | 30 153N 91W | 0.005 | 0.004 | 22.92 01/2021 | 88.2 | 237.3 | 32.8 | 0.5 | 0.9 | 0.1 | 32.7 | 1.5 | 14.4 | 1.2 | 15.6 | 10.0 | 327.4 | 248.6 | 239.2 | 11.3 | | LITTLEFIELD 12-29TFH | PDP | THREE FORKS | 29 153N 91W | 0.005 | 0.004 | 20.33 01/2021 | 87.1 | 98.6 | 13.6 | 0.4 | 0.3 | 0.1 | 26.2 | 1.3 | 11.7 | 1.1 | 12.2 | 8.1 | 350.7 | 103.0 | 263.6 | 4.4 | | LITTLEFIELD 12-34H | PDP | BAKKEN | 34 154N 91W | 0.134 | 0.111 | 27.67 01/2021 | 118.7 | 903.6 | 124.7 | 13.1 | 89.4 | 13.8 | 1,680.2 | 76.6 | 725.0 | 35.2 | 843.4 | 456.9 | 853.8 | 968.9 | 735.1 | 65.3 | | LITTLEFIELD 14-13-2XH | PDP | BAKKEN | 13 153N 91W | 0.002 | 0.002 | 25.17 01/2021 | 98.7 | 703.5 | 97.1 | 0.2 | 1.0 | 0.2 | 19.4 | 0.8 | 8.4 | 0.5 | 9.7 | 5.7 | 414.0 | 739.0 | 315.4 | 35.5 | | LITTLEFIELD 14-13XH | PDP | BAKKEN | 13 153N 91W | 0.002 | 0.002 | 10.42 01/2021 | 22.9 | 129.1 | 17.8 | 0.0 | 0.2 | 0.0 | 3.8 | 0.2 | 2.2 | 0.4 | 1.1 | 1.0 | 273.7 | 142.5 | 250.7 | 13.4 | | LITTLEFIELD FEDERAL 11-34H | PDP | BAKKEN | 34 154N 91W | 0.134 | 0.111 | 28.00 01/2021 | 144.7 | 1,106.6 | 152.7 | 16.0 | 109.5 | 16.9 | 2,055.4 | 100.3 | 1,015.9 | 35.2 | 904.1 | 517.8 | 416.4 | 1,193.6 | 271.6 | 87.0 | | LOCKEN 11-22H | PDP | BAKKEN | 22 153N 91W | 0.006 | 0.005 | 16.50 10/2020 | 49.9 | 310.7 | 42.9 | 0.3 | 1.4 | 0.2 | 28.6 | 1.2 | 14.2 | 1.3 | 11.8 | 9.2 | 812.0 | 339.2 | 762.1 | 28.5 | | MAKI 41-33-2XH | PDP | BAKKEN | 33 154N 91W | 0.043 | 0.036 | 22.92 01/2021 | 85.6 | 325.1 | 44.9 | 3.1 | 10.5 | 1.6 | 297.5 | 13.9 | 130.6 | 10.3 | 142.6 | 95.9 | 455.0 | 345.8 | 369.4 | 20.7 | | MAKI 41-33XH | PDP | BAKKEN | 33 154N 91W | 0.043 | 0.036 | 15.33 01/2021 | 49.9 | 72.8 | 10.0 | 1.8 | 2.4 | 0.4 | 136.7 | 6.5 | 61.8 | 8.9 | 59.5 | 48.6 | 726.4 | 79.7 | 676.6 | 6.9 | | MAKI 42-33XH | PDP | BAKKEN | 33 154N 91W | 0.043 | 0.036 | 35.92 01/2021 | 284.2 | 269.5 | 37.2 | 10.3 | 8.7 | 1.3 | 816.8 | 58.9 | 206.4 | 13.3 | 538.3 | 270.5 | 552.9 | 279.9 | 268.7 | 10.4 | | MARMON 11-18TFH | PDP | THREE FORKS | 18 153N 91W | 0.004 | 0.003 | 18.17 01/2021 | 58.1 | 51.4 | 7.1 | 0.2 | 0.2 | 0.0 | 14.7 | 0.7 | 6.9 | 0.9 | 6.2 | 4.4 | 227.7 | 53.8 | 169.6 | 2.4 | | MARMON 12-18TFH | PDP | THREE FORKS | 18 153N 91W | 0.004 | 0.003 | 17.83 01/2021 | 49.6 | 50.5 | 7.0 | 0.2 | 0.2 | 0.0 | 12.7 | 0.6 | 5.9 | 0.9 | 5.3 | 3.9 | 211.6 | 53.1 | 162.0 | 2.6 | | MAYER 12-3H | PDP | BAKKEN | 3 152N 92W | 0.131 | 0.109 | 25.67 01/2021 | 105.6 | 182.0 | 25.1 | 11.6 | 17.8 | 2.7 | 952.8 | 45.2 | 363.3 | 33.1 | 511.1 | 305.2 | 460.7 | 189.3 | 355.0 | 7.3 | | MAYNARD URAN TRUST 11-24H
MCNAMARA 41-26-2XH | PDP
PDP | BAKKEN
BAKKEN | 24 153N 92W | 0.084 | 0.069 | 21.00 01/2021
23.33 01/2021 | 82.7 | 152.5 | 21.0
101.6 | 5.7 | 9.3
1.7 | 1.4
0.3 | 461.6 | 21.9 | 204.7
16.1 | 19.3
0.7 | 215.7 | 142.6 | 759.1 | 159.8
796.8 | 676.5
414.9 | 7.3 | | MCNAMARA 41-26-2XH
MCNAMARA 41-26H | PDP | BAKKEN | 22-23-26-27
153N 91W
22-23 153N 91W | 0.003 | 0.003 | 28.42 01/2021 | 123.4
242.4 | 736.6
518.1 | 71.5 | 0.3
1.3 | 2.4 | 0.3 | 35.6
107.4 | 2.0
7.4 | 35.5 | 1.6 | 16.8
62.9 | 11.5
37.5 | 538.4
683.2 | 796.8
550.4 | 414.9 | 60.2
32.2 | | MCNAMARA 41-26XH | PDP | BAKKEN | 26 153N 91W | 0.008 | 0.003 | 17.67 01/2021 | 65.5 | 378.3 | 52.2 | 0.2 | 0.9 | 0.4 | 18.4 | 0.8 | 10.0 | 0.7 | 6.9 | 5.1 | 382.4 | 402.7 | 316.8 | 24.3 | | MCNAMARA 42-26-3XH | PDP | BAKKEN | 22-23-26-27 153N 91W | 0.003 | 0.003 | 22.17 01/2021 | 146.1 | 1,013.2 | 139.8 | 0.4 | 2.3 | 0.4 | 44.4 | 2.7 | 20.3 | 0.7 | 20.7 | 14.7 | 579.7 | 1,108.1 | 433.6 | 94.9 | | MCNAMARA 42-26H | PDP | BAKKEN | 26 153N 91W | 0.003 | 0.003 | 18.75 01/2021 | 67.1 | 341.9 | 47.2 | 0.2 | 0.8 | 0.1 | 18.1 | 0.8 | 9.6 | 0.7 | 7.0 | 5.0 | 624.1 | 361.7 | 557.0 | 19.8 | | MCNAMARA 42-26H-2XH | PDP | BAKKEN | 22-23-26-27 153N 91W | 0.003 | 0.003 | 19.75 01/2021 | 97.3 | 615.3 | 84.9 | 0.3 | 1.4 | 0.2 | 28.3 | 1.6 | 13.4 | 0.7 | 12.7 | 9.3 | 438.4 | 672.0 | 341.0 | 56.7 | | MCNAMARA 42-26XH | PDP | BAKKEN | 26 153N 91W | 0.003 | 0.003 | 25.08 01/2021 | 123.9 | 642.5 | 88.7 | 0.3 | 1.5 | 0.2 | 34.6 | 1.9 | 15.9 | 0.8 | 16.0 | 9.9 | 465.3 | 676.3 | 341.4 | 33.8 | | MEIER 12-17-2H | PDP | BAKKEN | 16-17 154N 92W | 0.030 | 0.025 | 20.67 01/2021 | 134.7 | 398.4 | 55.0 | 3.3 | 8.8 | 1.4 | 295.0 | 18.1 | 130.5 | 7.0 | 139.4 | 98.6 | 302.7 | 435.2 | 168.0 | 36.8 | | MEIER 12-17-3H | PDP | BAKKEN | 16-17 154N 92W | 0.030 | 0.025 | 17.33 01/2021 | 92.8 | 256.1 | 35.3 | 2.3 | 5.7 | 0.9 | 197.0 | 11.1 | 95.8 | 6.6 | 83.5 | 63.2 | 189.3 | 279.6 | 96.5 | 23.5 | | MEIERS 11-17H | PDP | BAKKEN | 17 154N 92W | 0.030 | 0.025 | 21.83 01/2021 | 145.5 | 127.4 | 17.6 | 3.6 | 2.8 | 0.4 | 265.9 | 17.8 | 97.5 | 7.1 | 143.5 | 95.9 | 551.4 | 136.2 | 405.9 | 8.8 | | MEIERS 11-17XH | PDP | BAKKEN | 8-9 / 16-17 154N-92W | 0.020 | 0.016 | 21.83 01/2021 | 178.8 | 309.9 | 42.8 | 2.9 | 4.6 | 0.7 | 234.1 | 16.5 | 86.6 | 4.7 | 126.2 | 90.2 | 401.8 | 350.2 | 223.0 | 40.3 | | MEIERS 12-17H | PDP | BAKKEN | 17 154N 92W | 0.030 | 0.025 | 11.33 01/2021 | 44.8 | 75.7 | 10.4 | 1.1 | 1.7 | 0.3 | 84.0 | 4.0 | 47.9 | 5.8 | 26.3 | 23.2 | 363.3 | 82.3 | 318.5 | 6.6 | | MEIERS 44-18H
MEIERS 44-18TFH | PDP
PDP | BAKKEN
THREE FORKS | 18 154N 92W
18 154N 92W | 0.030 | 0.025 | 19.83 01/2021
22.33 01/2021 | 106.3
140.2 | 161.3
97.6 | 22.3
13.5 | 2.6 | 3.6 | 0.5
0.3 | 206.4
254.7 | 10.9
14.6 | 98.3
106.7 | 6.8
7.2 | 90.4
126.2 | 59.5
78.0 | 361.2
350.2 | 168.7
101.8 | 254.9
210.0 | 7.4 | | MOORE 11-7H | PDP | BAKKEN | 7 154N 92W | 0.030 | 0.023 | 20.50 01/2021 | 111.3 | 175.0 | 24.1 | 3.5
19.7 | 2.2
27.8 | 4.3 | 1,566.6 | 83.3 | 726.1 | 50.0 | 707.3 | 456.8 | 389.1 | 182.5 | 277.8 | 4.1
7.5 | | MOORE 14-7-2XH | PDP | BAKKEN | 7 153N 91W | 0.002 | 0.002 | 22.67 01/2021 | 83.3 | 294.3 | 40.6 | 0.1 | 0.5 | 0.1 | 13.6 | 0.6 | 6.2 | 0.5 | 6.2 | 4.1 | 279.1 | 309.1 | 195.8 | 14.8 | | MOORE 14-72H | PDP | BAKKEN | 7 153N 91W | 0.002 | 0.002 | 13.17 01/2021 | 36.1 | 120.6 | 16.6 | 0.1 | 0.2 | 0.0 | 5.5 | 0.3 | 3.1 | 0.4 | 1.7 | 1.5 | 386.8 | 129.7 | 350.6 | 9.1 | | NESHEIM 11-24XH | PDP | BAKKEN | 24 153N 91W | 0.002 | 0.002 | 2.33 01/2021 | 6.0 | 16.4 | 2.3 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.6 | 0.3 | -0.1 | 0.0 | 477.9 | 20.6 | 471.9 | 4.2 | | NIEMITALO 31-15XH | PDP | BAKKEN | 15 154N 91W | 0.010 | 0.008 | 33.17 01/2021 | 213.9 | 488.5 | 67.4 | 1.7 | 3.4 | 0.5 | 147.3 | 9.8 | 47.3 | 2.8 | 87.4 | 45.7 | 731.6 | 507.5 | 517.7 | 19.1 | | OGDEN - 11-3HU | PDP | BAKKEN | 2-3/34-35 154-155N-92W | 0.071 | 0.058 | 30.50 01/2021 | 352.2 | 785.7 | 108.4 | 20.4 | 40.6 | 6.3 | 1,748.5 | 131.3 | 533.5 | 19.8 | 1,063.9 | 666.0 | 571.2 | 861.9 | 218.9 | 76.2 | | OGDEN 11-3TFH | PDP | THREE FORKS | 3 154N 92W | 0.142 | 0.116 | 11.50 01/2021 | 43.8 | 49.9 | 6.9 | 5.1 | 5.2 | 0.8 | 365.8 | 17.6 | 216.9 | 27.2 | 104.0 | 90.9 | 335.2 | 53.5 | 291.4 | 3.6 | | OGDEN 12-3-2H | PDP | BAKKEN | 3 154N 92W | 0.142 | 0.116 | 21.00 01/2021 | 78.5 | 116.8 | 16.1 | 9.1 | 12.1 | 1.9 | 715.5 | 34.2 | 313.1 | 32.5 | 335.7 | 221.2 | 299.0 | 122.3 | 220.5 | 5.5 | | OGDEN 12-3-3H | PDP | BAKKEN | 2-3 154N 92W | 0.142 | 0.116 | 26.42 01/2021 | 238.4 | 311.8 | 43.0 | 27.5 | 32.2 | 5.0 | 2,158.2 | 154.7 | 671.7 | 36.6 | 1,295.2 | 833.4 | 417.0 | 340.3 | 178.6 | 28.5 | | OGDEN 12-3H | PDP | BAKKEN | 3 154N 92W | 0.142 | 0.116 | 24.58 01/2021 | 110.8 | 152.2 | 21.0 | 12.8 | 15.7 | 2.4 | 1,016.5 | 52.1 | 384.8 | 35.2 | 544.5 | 330.6 | 567.0 | 159.3 | 456.1 | 7.1 | | OGDEN 12-3XH | PDP | BAKKEN | 2-3/10-11 154N 92W | 0.124 | 0.101 | 24.58 01/2021 | 202.8 | 332.0 | 45.8 | 20.6 | 30.1 | 4.6 | 1,649.3 | 114.3 | 556.3 | 30.8 | 947.9 | 630.6 | 367.6 | 365.4 | 164.8 | 33.4 | | OGDEN 13-3TFX | PDP
PDP | THREE FORKS | 3 154N 92W
3 154N 92W | 0.124 | 0.101 | 7.50 01/2021 | 24.4 | 28.5 | 3.9 | 2.5 | 2.6 | 0.4 | 175.6
840.3 | 8.5 | 125.9 | 22.0 | 19.3 | 22.3 | 216.5 | 31.0 | 192.1 | 2.5 | | OGDEN 14-3TFX
OGDEN 14-3XH | PDP | BAKKEN | 3 154N 92W
2-3/10-11 154N 92W | 0.124 | 0.101 | 23.83 01/2021
22.92 01/2021 | 93.2
167.7 | 255.8
333.9 | 35.3
46.1 | 9.5
17.0 | 23.2
30.3 | 3.6
4.7 | 840.3
1.399.6 | 39.0
92.8 | 358.1
549.6 | 30.2 | 413.0
727.6 | 260.0
491.3 | 266.5
320.4 | 272.9
368.1 | 173.2
152.7 | 17.1 | | OGDEN 14-3XH
OGDEN 41-9HU | PDP | BAKKEN | 4-5-6/7-8-9 154N-92W | 0.124 | 0.101 | 20.00 10/2020 | 129.8 | 192.4 | 26.5 | 4.2 | 5.5 | 0.9 | 322.8 | 20.8 | 128.0 | 29.6
8.8 | 165.2 | 118.0 | 407.7 | 212.6 | 277.9 | 34.2
20.2 | | OGDEN 41-9HU | PDP | THREE FORKS | 4-5-6/7-8-9 154N-92W
4-5-6/7-8-9 154N-92W | 0.040 | 0.032 | 29.67 01/2021 | 290.1 | 803.6 | 110.9 | 9.3 | 23.0 | 3.6 | 322.8
844.1 | 59.4 | 312.3 | 10.8 | 461.6 | 274.9 | 522.8 | 864.4 | 232.7 | 60.8 | | OIA 14-27XH | PDP | RAKKEN | 27 154N 91W | 0.040 | 0.055 | 21.33 01/2021 | 88.8 | 355.3 | 49.0 | 4.9 | 17.6 | 2.7 | 476.5 | 25.0 | 219.3 | 15.6 | 216.6 | 150.2 | 539.4 | 381.5 | 450.6 | 26.3 | | OLSON FEDERAL 42-8H | PDP | BAKKEN | 8 153N 91W | 0.001 | 0.003 | 19.00 01/2021 | 50.7 | 192.9 | 26.6 | 0.1 | 0.2 | 0.0 | 5.7 | 0.3 | 2.9 | 0.3 | 2.2 | 1.6 | 683.7 | 201.6 | 633.0 | 8.8 | | PAM LOCKEN 21-22TFH | PDP | THREE FORKS | 22 153N 91W | 0.006 | 0.005 | 13.33 01/2021 | 33.2 | 25.5 | 3.5 | 0.2 | 0.1 | 0.0 | 12.1 | 0.6 | 6.7 | 1.2 | 3.6 | 3.1 | 207.5 | 27.0 | 174.3 | 1.5 | | PATTEN 44-3H | PDP | BAKKEN | 3 153N 91W | 0.010 | 0.008 | 15.33 01/2021 | 42.6 | 341.7 | 47.2 | 0.3 | 2.5 | 0.4 | 42.6 | 1.8 | 22.9 | 2.0 | 15.9 | 12.5 | 783.0 | 371.4 | 740.4 | 29.6 | | PEERY STATE 11-25-2H | PDP | BAKKEN | 25 153N 92W | 0.005 | 0.004 | 10.92 01/2021 | 24.8 | 14.4 | 2.0 | 0.1 | 0.1 | 0.0 | 7.1 | 0.3 | 3.7 | 1.0 | 2.1 | 2.0 | 223.0 | 15.6 | 198.2 | 1.2 | | PEERY STATE 21-25H | PDP | BAKKEN | 25 153N 92W | 0.005 | 0.004 | 16.67 01/2021 | 57.2 | 162.6 | 22.4 | 0.2 | 0.6 | 0.1 | 20.7 | 1.0 | 10.0 | 1.1 | 8.7 | 6.7 | 323.0 | 176.0 | 265.8 | 13.4 | | PEERY STATE 22-25H | PDP | BAKKEN | 25 153N 92W | 0.005 | 0.004 | 19.25 01/2021 | 53.2 | 144.9 | 20.0 | 0.2 | 0.5 | 0.1 | 19.4 | 0.9 | 9.4 | 1.1 | 8.0 | 5.6 | 241.3 | 152.8 | 188.1 | 7.9 | | PENNINGTON 11-3H | PDP | BAKKEN | 3 152N 92W | 0.131 | 0.109 | 23.08 01/2021 | 76.9 | 140.5 | 19.4 | 8.4 | 13.7 | 2.1 | 691.8 | 32.8 | 274.8 | 31.2 | 353.0 | 219.7 | 420.7 | 146.4 | 343.9 | 5.8 | | PENNINGTON 11-3TFH | PDP | THREE FORKS | 3 152N 92W | 0.131 | 0.109 | 23.42 01/2021 | 87.8 | 143.8 | 19.8 | 9.6 | 14.1 | 2.2 | 775.4 | 36.9 | 311.1 | 31.8 | 395.6 | 249.3 | 329.9 | 152.0 | 242.1 | 8.2 | | PENNINGTON 21-3H | PDP | BAKKEN | 3 152N 92W | 0.131 | 0.109 | 19.75 01/2021 | 55.0 | 88.7 | 12.2 | 6.0 | 8.7 | 1.3 | 477.1 | 22.7 | 217.3 | 29.4 | 207.6 | 143.1 | 290.3 | 92.8 | 235.3 | 4.0 | | PLATT 43-28H
PLATT 44-28H | PDP
PDP | BAKKEN
BAKKEN | 28 154N 91W | 0.066 | 0.055 | 23.42 01/2021 | 113.6 | 364.3 | 50.3 | 6.2 | 17.9 | 2.8 | 578.9 | 29.7 | 260.0 | 16.0 | 273.1 | 169.2 | 562.9 | 380.9 | 449.3 | 16.6 | | RICHARDSON FEDERAL 11-9H | PDP | BAKKEN | 28 154N 91W
9 153N 91W | 0.066 | 0.055 | 10.67 01/2021
16.83 01/2021 | 36.4
45.8 | 103.6
317.7 | 14.3
43.8 | 2.0
0.1 | 5.1
0.3 | 0.8
0.1 | 167.9
6.3 | 7.8
0.3 | 101.2
3.3 | 12.4
0.3 | 46.5
2.4 | 41.4
1.8 | 619.5
1.039.8 | 111.2
338.9 | 583.1
994.0 | 7.7
21.2 | | ROBERT PATTEN 44-3TEH | PDP | THREE FORKS | 3 153N 91W | 0.001 | 0.001 | 9.67 01/2021 | 29.1 | 34.3 | 45.6 | 0.1 | 0.3 | 0.0 | 17.0 | 0.8 | 8.8 | 1.8 | 5.6 | 5.3 | 230.4 | 38.1 | 201.3 | 3.7 | | RODNEY OLSON FEDERAL 42-8-2TEH | PDP | THREE FORKS | 8 153N 91W | 0.010 | 0.008 | 25.08 01/2021 | 128.1 | 149.9 | 20.7 | 0.2 | 0.2 | 0.0 | 11.8 | 0.8 | 4.5 | 0.4 | 6.3 | 3.8 | 372.3 | 156.8 | 244.3 | 6.9 | | SATTERTHWAITE 14-35HU | PDP | BAKKEN | 6/1-2/31/35-36 153/4N-92/93W | 0.031 | 0.025 | 28.58 09/2021 | 281.9 | 338.2 | 46.7 | 7.1 | 7.6 | 1.2 | 557.5 | 41.3 | 175.1 | 17.7 | 323.3 | 194.5 | 473.0 | 567.6 | 191.2 | 229.4 | | | | | ., ,, , / 33** | | | , 2022 | | | | | 0 | | | | | _,,, | 223.5 | | 5.0 | 227.0 | Investment | | Discounted | | | | |
--|--|---|---|---|--|---|---|--
--|--|--|---|--|---|---|---|--|--|---|--|---|--|---| | | | | | | | Life | Start | | | | | | | Net Revenue | Taxes | Expense | | | NCF @ 10% | Ultimate | Ultimate | | Cum Gas | | Well | Res Cat | Reservoir | Location | WI | NRI | (Years) | Date | (Mbbl) | (MMCF) | (Mbbl) | | (MMCF) | (Mbbl) | (M\$) | (M\$) | (M\$) | Cost (M\$) | (M\$) | (M\$) | Oil (Mbbl) | Gas (MMCF) | (Mbbl) | (MMCF) | | SATTERTHWAITE 14-35TFHU | PDP | THREE FORKS | 6/1-2/31/35-36 153/4N-92/93W | 0.031 | 0.025 | 26.17 | 10/2021 | 226.1 | 312.2 | 43.1 | 5.7 | 7.1 | 1.1 | 451.3 | 31.8 | 160.0 | 17.2 | 242.3 | 149.7 | 376.1 | 508.1 | 150.1 | 195.9 | | SATTERTHWAITE 14-6H | PDP | BAKKEN | 6 153N 92W | 0.188 | 0.152 | | 01/2021 | 4.6 | 10.1 | 1.4 | 0.7 | 1.4 | 0.2 | 54.5 | 2.5 | 41.2 | 30.6 | -19.8 | -12.6 | 65.3 | 13.2 | 60.8 | 3.0 | | SATTERTHWAITE 14-7HU
S-BAR 11-7HU | PDP
PDP | BAKKEN
BAKKEN | 1-12 / 6-7 153N-92-93W
6-7 / 5-8 153N-92W | 0.047 | 0.038 | | 10/2021 | 201.4
433.4 | 231.3 | 31.9
97.0 | 7.6
16.4 | 7.8
23.8 | 1.2 | 586.1
1.320.0 | 40.8
105.2 | 210.4 | 25.6 | 309.3
833.7 | 195.1
579.5 | 345.1
433.4 | 390.0
703.0 | 143.8 | 158.6
0.0 | | | | | , | | | | , | | 703.0 | | | | 3.7 | -, | | 354.3 | 26.8 | | | | | 0.0 | | | S-BAR 11-7TFHU | PDP | | 6-7 / 5-8 153N-92W | 0.047 | 0.038 | | 10/2021 | 231.3 | 380.4 | 52.5 | 8.8 | 12.9 | 2.0 | 695.3 | 51.3 | 236.7 | 25.4 | 381.9 | 273.4 | 231.3 | 380.4 | 0.0 | 0.0 | | SCOTT MEIERS 12-17TFH | PDP | THREE FORKS | 17 154N 92W | 0.030 | 0.025 | | 01/2021 | 106.0 | 88.0 | 12.1 | 2.6 | 1.9 | 0.3 | 194.4 | 9.8 | 85.2 | 7.1 | 92.3 | 59.0 | 328.8 | 92.0 | 222.8 | 4.0 | | SMITH 11-20H | PDP | BAKKEN | 20 153N 91W | 0.005 | 0.004 | | 01/2021 | 97.0 | 234.8 | 32.4 | 0.4 | 0.9 | 0.1 | 35.0 | 2.1 | 15.1 | 1.1 | 16.7 | 12.2 | 705.8 | 253.7 | 608.8 | 18.8 | | SMITH 41-24H | PDP | BAKKEN | 24 153N 92W | 0.084 | 0.069 | | 01/2021 | 58.2 | 366.8 | 50.6 | 4.0 | 22.5 | 3.5 | 454.8 | 19.8 | 231.9 | 18.9 | 184.1 | 120.3 | 333.4 | 384.1 | 275.1 | 17.3 | | SNYDER 21-11H | PDP | BAKKEN | 11 153N 91W | 0.004 | 0.003 | | 10/2020 | 169.3 | 458.4 | 63.3 | 0.5 | 1.3 | 0.2 | 49.9 | 3.0 | 16.2 | 1.1 | 29.6 | 15.6 | 646.6 | 476.1 | 477.3 | 17.7 | | URAN 12-24TFH | PDP | THREE FORKS | 24 153N 92W | 0.084 | 0.069 | | 01/2021 | 69.5 | 40.9 | 5.6 | 4.8 | 2.5 | 0.4 | 343.4 | 16.8 | 145.5 | 19.3 | 161.8 | 109.2 | 292.8 | 43.0 | 223.2 | 2.1 | | URAN 21-24TFH | PDP | THREE FORKS | 24 153N 92W | 0.084 | 0.069 | | 01/2021 | 115.3 | 142.2 | 19.6 | 7.9 | 8.7 | 1.3 | 615.9 | 29.6 | 249.4 | 20.5 | 316.4 | 195.4 | 323.2 | 148.2 | 207.9 | 6.0 | | VANGEN 11-3TFH | PDP | THREE FORKS | 3 152N 92W | 0.131 | 0.109 | | 01/2021 | 85.7 | 92.3 | 12.7 | 9.4 | 9.0 | | 719.0 | 34.7 | 281.5 | 31.2 | 371.5 | 233.5 | 341.7 | 96.9 | 256.0 | 4.6 | | WALDOCK 14-4-2XH | PDP | BAKKEN | 4 153N 91W | 0.006 | 0.005 | | 01/2021 | 145.0 | 782.4 | 108.0 | 0.7 | 3.3 | 0.5 | 75.6 | 3.7 | 30.9 | 1.5 | 39.5 | 21.3 | 494.0 | 812.3 | 349.1 | 29.9 | | WALDOCK 14-4XH | PDP | BAKKEN | 4 153N 91W | 0.006 | 0.005 | | 01/2021 | 3.5 | 21.7 | 3.0 | 0.0 | 0.1 | 0.0 | 1.8 | 0.1 | 1.3 | 0.9 | -0.5 | -0.4 | 311.5 | 27.5 | 307.9 | 5.8 | | WALDOCK FEDERAL 14-4-3XH | PDP | BAKKEN | 4 153N 91W | 0.006 | 0.005 | | 01/2021 | 105.7 | 974.8 | 134.5 | 0.5 | 4.1 | 0.6 | 68.5 | 2.9 | 34.1 | 1.4 | 30.1 | 17.4 | 543.5 | 1,016.1 | 437.9 | 41.3 | | WARDEN 43-9TFH | PDP | THREE FORKS | 9 154N 92W | 0.010 | 0.008 | | 01/2021 | 20.5 | 20.4 | 2.8 | 0.2 | 0.2 | 0.0 | 11.8 | 0.6 | 6.5 | 1.8 | 2.9 | 3.1 | 216.3 | 23.3 | 195.9 | 2.9 | | WHITE 43-33H | PDP | BAKKEN | 32-33 154N-91W | 0.020 | 0.017 | | 01/2021 | 415.6 | 1,017.0 | 140.4 | 7.2 | 15.7 | 2.4 | 633.7 | 48.3 | 182.5 | 6.0 | 396.9 | 240.0 | 696.5 | 1,105.7 | 280.9 | 88.6 | | WHITE 43-33TFH | PDP | THREE FORKS | 33 154N 91W | 0.020 | 0.017 | | 01/2021 | 113.4 | 59.7 | 8.2 | 2.0 | 0.9 | 0.1 | 140.5 | 7.8 | 60.7 | 4.6 | 67.3 | 43.1 | 310.4 | 62.3 | 196.9 | 2.6 | | WHITE 44-33-2TFH | PDP | THREE FORKS | 28-29/32-33 154N-91W | 0.043 | 0.036 | | 01/2021 | 160.3 | 263.0 | 36.3 | 5.8 | 8.5 | 1.3 | 454.9 | 32.0 | 171.9 | 22.8 | 228.2 | 169.2 | 196.5 | 322.1 | 36.1 | 59.2 | | APO WELL ABANDONMENT | PDP | | | 0.000 | 0.000 | | 10/2021 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 331.8 | -331.8 | -37.3 | 0.0 | 0.0 | 0.0 | 0.0 | | ALLISON 14-6H | PDP-APO | BAKKEN | 6 153N 92W | 0.000 | 0.000 | | 01/2021 | 38.3 | 56.5 | 7.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 153.2 | 63.8 | 114.9 | 7.3 | | BARB W. 11-6TFH | PDP-APO | THREE FORKS | 6 153N 92W | 0.000 | 0.000 | 14.17 | 01/2021 | 56.3 | 44.6 | 6.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 177.4 | 47.5 | 121.1 | 3.0 | | DOUG KINNOIN 11-14H | PDP-APO | BAKKEN | 14 154N 91W | 0.000 | 0.000 | 17.42 | 01/2021 | 96.2 | 319.4 | 44.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 606.5 | 343.1 | 510.3 | 23.6 | | EARL T 11-6TFH | PDP-APO | THREE FORKS | 6 153N 92W | 0.000 | 0.000 | 17.67 | 01/2021 | 84.8 | 90.4 | 12.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 199.7 | 95.3 | 114.9 | 4.9 | | HANSEN 21-20TFH | PDP-APO | THREE FORKS | 20 153N 91W | 0.000 | 0.000 | 21.83 | 01/2021 | 127.1 | 125.7 | 17.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 429.5 | 131.7 | 302.4 | 6.0 | | IVERSON 44-11-2H | PDP-APO | BAKKEN | 11 154N 92W | 0.000 | 0.000 | 7.17 | 01/2021 | 22.6 | 18.3 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 173.8 | 20.2 | 151.2 | 1.9 | | IVERSON 44-11H | PDP-APO | BAKKEN | 11 154N 92W | 0.000 | 0.000 | 8.00 | 01/2021 | 24.6 | 73.6 | 10.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 233.6 | 86.9 | 209.1 | 13.3 | | JB 11-6TFH | PDP-APO | THREE FORKS | 6 153N 92W | 0.000 | 0.000 | 10.50 | 01/2021 | 36.0 | 18.0 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 140.7 | 19.6 | 104.7 | 1.5 | | KANNIANEN 21-4H | PDP-APO | BAKKEN | 4 153N 91W | 0.000 | 0.000 | 17.00 | 01/2021 | 77.5 | 656.6 | 90.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 357.5 | 714.2 | 280.0 | 57.5 | | OJA 13-27-2XH | PDP-APO | BAKKEN | 27 154N 91W | 0.000 | 0.000 | 6.25 | 01/2021 | 14.7 | 189.6 | 26.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 274.5 | 211.8 | 259.8 | 22.3 | | OJA 13-27-3XH | PDP-APO | BAKKEN | 27 154N 91W | 0.000 | 0.000 | 21.00 | 01/2021 | 113.8 | 596.8 | 82.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 569.3 | 633.7 | 455.5 | 36.9 | | PEERY STATE 12-25TFH | PDP-APO | THREE FORKS | 25 153N 92W | 0.000 | 0.000 | 19.42 | 01/2021 | 97.5 | 138.9 | 19.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 331.1 | 145.4 | 233.5 | 6.4 | | PEERY STATE 21-25TFH | PDP-APO | THREE FORKS | 25 153N 92W | 0.000 | 0.000 | 19.67 | 01/2021 | 100.3 | 103.1 | 14.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 295.2 | 107.8 | 194.9 | 4.7 | | URAN 11-24-2H | PDP-APO | BAKKEN | 24 153N 92W | 0.000 | 0.000 | 10.17 | 01/2021 | 33.9 | 51.5 | 7.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 264.6 | 55.4 | 230.8 | 3.9 | URAN FEDERAL 21-24H | PDP-APO | BAKKEN | 24 153N 92W | 0.000 | 0.000 | 12.17 | 01/2021 | 45.4 | 82.3 | 11.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 304.0 | 88.3 | 258.5 | 6.0 | | URAN FEDERAL 21-24H
URAN FEDERAL 22-24H | PDP-APO
PDP-APO | BAKKEN
BAKKEN | 24 153N 92W
24 153N 92W | 0.000 | 0.000 | | 01/2021
01/2021 | 45.4
90.9 | 82.3
690.0 | 11.4
95.2 | 0.0 | 0.0 | 0.0 | 0.0
0.0 |
0.0 | 0.0 | 0.0 | 0.0
0.0 | 0.0
0.0 | 304.0
359.9 | 88.3
735.8 | 258.5
269.1 | 6.0
45.8 | PDP-APO | 735.8 | | | | URAN FEDERAL 22-24H | PDP-APO | | | | | | | 90.9 | 690.0 | 95.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 359.9 | 735.8 | 269.1 | 45.8 | | URAN FEDERAL 22-24H | PDP-APO | | | | | | | 90.9 | 690.0 | 95.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 359.9 | 735.8 | 269.1 | 45.8 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU | PDP-APO | | | | | 19.17 | | 90.9 | 690.0 | 95.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 359.9 | 735.8 | 269.1 | 45.8 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING | PDP-APO
JCING | BAKKEN | 24 153N 92W | 0.000 | 0.000 | 19.17
21.75 | 01/2021 | 90.9
20,192.0 | 690.0
46,728.9 | 95.2
6,448.6 | 0.0
1,097.6 | 0.0
1,823.1 | 0.0
281.4 | 0.0
90,402.9 | 0.0
5,522.9 | 0.0
34,297.1 | 0.0
2,902.2 | 0.0
47,680.8 | 0.0
30,458.7 | 359.9
75,586.2 | 735.8
50,432.1 | 269.1
55,394.2 | 45.8
3,703.3 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU | PDP-APO JCING PNP | BAKKEN | 24 153N 92W
3-4/(N/2) 9-10 154N-92W | 0.000 | 0.000 | 19.17
21.75
21.00 | 01/2021 | 90.9
20,192.0
173.9 | 690.0
46,728.9
411.2 | 95.2
6,448.6
56.7 | 0.0
1,097.6
9.5 | 0.0
1,823.1
20.0 | 0.0
281.4
3.1 | 90,402.9
796.3 | 0.0
5,522.9
54.8 | 0.0
34,297.1
290.6 | 0.0
2,902.2
22.3 | 0.0
47,680.8
428.7 | 0.0
30,458.7
312.9 | 359.9
75,586.2
304.7 | 735.8
50,432.1
411.2 | 269.1
55,394.2
130.8 | 45.8
3,703.3
0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H | PDP-APO JCING PNP PNP | BAKKEN
BAKKEN
BAKKEN | 24 153N 92W
3-4/(N/2) 9-10 154N-92W
14 154N 92W | 0.000
0.067
0.292 | 0.000
0.054
0.245 | 19.17
21.75
21.00
16.58 | 01/2021
11/2021
11/2021 | 90.9
20,192.0
173.9
107.2 | 690.0
46,728.9
411.2
194.3 | 95.2
6,448.6
56.7
26.8 | 0.0
1,097.6
9.5
26.3 | 0.0
1,823.1
20.0
42.6 | 0.0
281.4
3.1
6.6 | 90,402.9
796.3
2,132.6 | 0.0
5,522.9
54.8
113.4 | 0.0
34,297.1
290.6
942.3 | 2,902.2
22.3
96.0 | 0.0
47,680.8
428.7
981.0 | 0.0
30,458.7
312.9
619.8 | 359.9
75,586.2
304.7
464.0 | 735.8
50,432.1
411.2
194.3 | 269.1
55,394.2
130.8
356.8 | 45.8
3,703.3
0.0
0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H | PDP-APO JCING PNP PNP PNP | BAKKEN
BAKKEN
BAKKEN
BAKKEN | 24 153N 92W
3-4/(N/2) 9-10 154N-92W
14 154N 92W
33 154N 91W | 0.000
0.067
0.292
0.020 | 0.000
0.054
0.245
0.017 | 21.75
21.00
16.58
22.67 | 01/2021
11/2021
11/2021
11/2021 | 90.9
20,192.0
173.9
107.2
45.1 | 690.0
46,728.9
411.2
194.3
97.7 | 95.2
6,448.6
56.7
26.8
13.5 | 9.5
26.3
0.8 | 0.0
1,823.1
20.0
42.6
1.5 | 3.1
6.6
0.2 | 796.3
2,132.6
63.4 | 5,522.9
54.8
113.4
3.0 | 0.0
34,297.1
290.6
942.3
28.0 | 2,902.2
22.3
96.0
6.3 | 0.0
47,680.8
428.7
981.0
26.0 | 30,458.7
312.9
619.8
19.5 | 359.9
75,586.2
304.7
464.0
435.9 | 735.8
50,432.1
411.2
194.3
97.7 | 269.1
55,394.2
130.8
356.8
390.8 | 45.8
3,703.3
0.0
0.0
0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H | PDP-APO JCING PNP PNP PNP PNP | BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN | 24 153N 92W
3-4/(N/2) 9-10 154N-92W
14 154N 92W
33 154N 91W
10 152N 92W | 0.000
0.067
0.292
0.020
0.128 | 0.000
0.054
0.245
0.017
0.106 | 21.75
21.00
16.58
22.67 | 01/2021
11/2021
11/2021
11/2021
11/2021 | 90.9
20,192.0
173.9
107.2
45.1
103.3 | 690.0
46,728.9
411.2
194.3
97.7
65.4 | 95.2
6,448.6
56.7
26.8
13.5
9.0 | 0.0
1,097.6
9.5
26.3
0.8
10.9 | 0.0
1,823.1
20.0
42.6
1.5
6.2 | 3.1
6.6
0.2 | 796.3
2,132.6
63.4
800.2 | 54.8
113.4
3.0
39.9 | 0.0
34,297.1
290.6
942.3
28.0
306.1 | 2,902.2
22.3
96.0
6.3
43.1 | 0.0
47,680.8
428.7
981.0
26.0
411.3 | 0.0
30,458.7
312.9
619.8
19.5
250.9 | 359.9
75,586.2
304.7
464.0
435.9
293.3 | 735.8
50,432.1
411.2
194.3
97.7
65.4 | 269.1
55,394.2
130.8
356.8
390.8
189.9 | 45.8
3,703.3
0.0
0.0
0.0
0.0
0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H | PDP-APO JCING PNP PNP PNP PNP | BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN | 24 153N 92W
3-4/(N/2) 9-10 154N-92W
14 154N 92W
33 154N 91W
10 152N 92W | 0.000
0.067
0.292
0.020
0.128 | 0.000
0.054
0.245
0.017
0.106 | 21.75
21.00
16.58
22.67 | 01/2021
11/2021
11/2021
11/2021
11/2021 | 90.9
20,192.0
173.9
107.2
45.1
103.3
91.5 | 690.0
46,728.9
411.2
194.3
97.7
65.4
216.5 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9 | 9.5
26.3
0.8
10.9
0.4 | 0.0
1,823.1
20.0
42.6
1.5
6.2
0.8 | 3.1
6.6
0.2
1.0 | 796.3
2,132.6
63.4
800.2
33.0 | 5,522.9 54.8 113.4 3.0 39.9 1.6 | 0.0
34,297.1
290.6
942.3
28.0
306.1
14.2 | 2,902.2
22.3
96.0
6.3
43.1
1.7 | 0.0
47,680.8
428.7
981.0
26.0
411.3
15.5 | 312.9
619.8
19.5
250.9
9.6 | 359.9
75,586.2
304.7
464.0
435.9
293.3
523.0 | 735.8
50,432.1
411.2
194.3
97.7
65.4
216.5 | 269.1
55,394.2 130.8 356.8 390.8 189.9 431.5 | 45.8
3,703.3
0.0
0.0
0.0
0.0
0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H | PDP-APO JCING PNP PNP PNP PNP | BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN | 24 153N 92W
3-4/(N/2) 9-10 154N-92W
14 154N 92W
33 154N 91W
10 152N 92W | 0.000
0.067
0.292
0.020
0.128 | 0.000
0.054
0.245
0.017
0.106 | 21.75
21.00
16.58
22.67 | 01/2021
11/2021
11/2021
11/2021
11/2021 | 90.9
20,192.0
173.9
107.2
45.1
103.3
91.5 | 690.0
46,728.9
411.2
194.3
97.7
65.4
216.5 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9 | 9.5
26.3
0.8
10.9
0.4 | 0.0
1,823.1
20.0
42.6
1.5
6.2
0.8 | 3.1
6.6
0.2
1.0 | 796.3
2,132.6
63.4
800.2
33.0 | 5,522.9 54.8 113.4 3.0 39.9 1.6 | 0.0
34,297.1
290.6
942.3
28.0
306.1
14.2 | 2,902.2
22.3
96.0
6.3
43.1
1.7 | 0.0
47,680.8
428.7
981.0
26.0
411.3
15.5 | 312.9
619.8
19.5
250.9
9.6 | 359.9
75,586.2
304.7
464.0
435.9
293.3
523.0 | 735.8
50,432.1
411.2
194.3
97.7
65.4
216.5 | 269.1
55,394.2 130.8 356.8 390.8 189.9 431.5 | 45.8
3,703.3
0.0
0.0
0.0
0.0
0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING | PDP-APO JCING PNP PNP PNP PNP | BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN | 24 153N 92W
3-4/(N/2) 9-10 154N-92W
14 154N 92W
33 154N 91W
10 152N 92W | 0.000
0.067
0.292
0.020
0.128 | 0.000
0.054
0.245
0.017
0.106 | 21.75
21.00
16.58
22.67
22.92 | 01/2021
11/2021
11/2021
11/2021
11/2021 | 90.9
20,192.0
173.9
107.2
45.1
103.3
91.5 | 690.0
46,728.9
411.2
194.3
97.7
65.4
216.5 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9 | 9.5
26.3
0.8
10.9
0.4 | 0.0
1,823.1
20.0
42.6
1.5
6.2
0.8 | 3.1
6.6
0.2
1.0 | 796.3
2,132.6
63.4
800.2
33.0 | 5,522.9 54.8 113.4 3.0 39.9 1.6 | 0.0
34,297.1
290.6
942.3
28.0
306.1
14.2 | 2,902.2
22.3
96.0
6.3
43.1
1.7 | 0.0
47,680.8
428.7
981.0
26.0
411.3
15.5 | 312.9
619.8
19.5
250.9
9.6 | 359.9
75,586.2
304.7
464.0
435.9
293.3
523.0 | 735.8
50,432.1
411.2
194.3
97.7
65.4
216.5 | 269.1
55,394.2 130.8 356.8 390.8 189.9 431.5 | 45.8
3,703.3
0.0
0.0
0.0
0.0
0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED | PDP-APO JCING PNP PNP PNP PNP PNP PNP | BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN | 24 153N 92W
3-4/(N/2) 9-10 154N-92W
14 154N 92W
33 154N 91W
10 152N 92W | 0.000
0.067
0.292
0.020
0.128
0.005 | 0.000
0.054
0.245
0.017
0.106
0.004 |
19.17
21.75
21.00
16.58
22.67
22.92 | 01/2021
11/2021
11/2021
11/2021
11/2021
11/2021 | 90.9
20,192.0
173.9
107.2
45.1
103.3
91.5
521.0 | 690.0
46,728.9
411.2
194.3
97.7
65.4
216.5
985.0 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9
135.9 | 0.0
1,097.6
9.5
26.3
0.8
10.9
0.4
47.8 | 0.0
1,823.1
20.0
42.6
1.5
6.2
0.8
71.1 | 3.1
6.6
0.2
1.0
0.1 | 90,402.9 796.3 2,132.6 63.4 800.2 33.0 3,825.6 | 5,522.9
54.8
113.4
3.0
39.9
1.6
212.6 | 290.6
942.3
28.0
306.1
14.2
1,581.1 | 2,902.2
22.3
96.0
6.3
43.1
1.7
169.4 | 0.0
47,680.8
428.7
981.0
26.0
411.3
15.5
1,862.5 | 312.9
619.8
19.5
250.9
9.6
1,212.7 | 359.9
75,586.2
304.7
464.0
435.9
293.3
523.0
2,020.9 | 735.8
50,432.1
411.2
194.3
97.7
65.4
216.5
985.0 | 269.1
55,394.2
130.8
356.8
390.8
189.9
431.5
1,499.9 | 45.8
3,703.3
0.0
0.0
0.0
0.0
0.0
0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT | PDP-APO JCING PNP PNP PNP PNP PNP PNP PNP PNP | BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN | 24 153N 92W
3-4/(N/2) 9-10 154N-92W
14 154N 92W
10 152N 92W
25 153N 92W | 0.000
0.067
0.292
0.020
0.128
0.005 | 0.000
0.054
0.245
0.017
0.106
0.004 | 21.75
21.00
16.58
22.67
22.92
17.58
26.92 | 01/2021
11/2021
11/2021
11/2021
11/2021
11/2021 | 90.9
20,192.0
173.9
107.2
45.1
103.3
91.5
521.0 | 690.0
46,728.9
411.2
194.3
97.7
65.4
216.5
985.0 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9
135.9 | 0.0
1,097.6
9.5
26.3
0.8
10.9
0.4
47.8 | 0.0
1,823.1
20.0
42.6
1.5
6.2
0.8
71.1 | 0.0 281.4 3.1 6.6 0.2 1.0 0.1 11.0 | 0.0
90,402.9
796.3
2,132.6
63.4
800.2
33.0
3,825.6 | 54.8
113.4
3.0
39.9
1.6
212.6 | 0.0
34,297.1
290.6
942.3
28.0
306.1
14.2
1,581.1 | 2,902.2
22.3
96.0
6.3
43.1
1.7
169.4 | 0.0
47,680.8
428.7
981.0
26.0
411.3
15.5
1,862.5 | 0.0
30,458.7
312.9
619.8
19.5
250.9
9.6
1,212.7 | 359.9
75,586.2
304.7
464.0
435.9
293.3
523.0
2,020.9 | 735.8
50,432.1
411.2
194.3
97.7
65.4
216.5
985.0
459.5 | 269.1
55,394.2
130.8
356.8
390.8
189.9
431.5
1,499.9 | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-1-3H MB (Infill #1) LACEY 12-10-2H (Infill #2) | PDP-APO DCING PNP PNP PNP PNP PNP PNP PNP PNP PUD-DUC PUD-DUC PUD-DUC | BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 10 152N 92W 25 153N 92W 2-3 152N 92W 10-11 152N-92W | 0.000
0.067
0.292
0.020
0.128
0.005
0.015
0.131
0.128 | 0.000
0.054
0.245
0.017
0.106
0.004
0.012
0.109
0.106 | 21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.92 | 01/2021
11/2021
11/2021
11/2021
11/2021
11/2021
11/2021
01/2022
01/2022 | 90.9
20,192.0
173.9
107.2
45.1
103.3
91.5
521.0
549.0
440.1
440.1 | 690.0
46,728.9
411.2
194.3
97.7
65.4
216.5
985.0
459.5
567.7
567.7 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9
135.9 | 0.0
1,097.6
9.5
26.3
0.8
10.9
0.4
47.8
6.5
48.1
46.6 | 0.0
1,823.1
20.0
42.6
1.5
6.2
0.8
71.1
4.9
55.5
53.7 | 0.0
281.4
3.1
6.6
0.2
1.0
0.1
11.0 | 796.3
2,132.6
63.4
800.2
33.0
3,825.6
459.7
3,639.2
3,519.8 | 5,522.9 54.8 113.4 3.0 39.9 1.6 212.6 42.0 301.1 291.2 | 0.0 34,297.1 290.6 942.3 28.0 306.1 14.2 1,581.1 72.1 842.7 818.8 | 2,902.2
22.3
96.0
6.3
43.1
1.7
169.4
119.4
757.8
817.4 | 0.0
47,680.8
428.7
981.0
26.0
411.3
15.5
1,862.5 | 0.0 30,458.7 312.9 619.8 19.5 250.9 9.6 1,212.7 179.8 1,149.9 1,027.5 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 440.1 | 735.8
50,432.1
411.2
194.3
97.7
65.4
216.5
985.0
459.5
567.7
567.7 | 269.1
55,394.2
130.8
356.8
390.8
189.9
431.5
1,499.9
0.0
0.0
0.0 | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-1-3H MB (Infill #1) LACEY 13-10-10H MB #1 | PDP-APO PICING PNP PNP PNP PNP PNP PNP PNP PND PUD-DUC PUD-DUC | BAKKEN BAKKEN BAKKEN BAKKEN BAKKEN BAKKEN BAKKEN BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 10 152N 92W 25 153N 92W 2-3 152N 92W 10-11 152N-92W 10-11 / 14-15 152N-92W | 0.000
0.067
0.292
0.020
0.128
0.005 | 0.000
0.054
0.245
0.017
0.106
0.004 | 21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.92
26.83 | 01/2021
11/2021
11/2021
11/2021
11/2021
11/2021
11/2021
01/2022
01/2022
01/2022 | 90.9
20,192.0
173.9
107.2
45.1
103.3
91.5
521.0
549.0
440.1 | 690.0
46,728.9
411.2
194.3
97.7
65.4
216.5
985.0
459.5
567.7 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9
135.9 | 0.0
1,097.6
9.5
26.3
0.8
10.9
0.4
47.8
6.5
48.1 | 0.0
1,823.1
20.0
42.6
1.5
6.2
0.8
71.1
4.9
55.5 | 0.0 281.4 3.1 6.6 0.2 1.0 0.1 11.0 0.8 8.6 8.3 4.2 | 0.0
90,402.9
796.3
2,132.6
63.4
800.2
33.0
3,825.6
459.7
3,639.2 | 5,522.9 54.8 113.4 3.0 39.9 1.6 212.6 | 290.6
942.3
28.0
306.1
14.2
1,581.1
72.1
842.7 | 2,902.2
22.3
96.0
6.3
43.1
1.7
169.4 | 0.0
47,680.8
428.7
981.0
26.0
411.3
15.5
1,862.5
226.1
1,737.6
1,592.3
801.0 | 0.0
30,458.7
312.9
619.8
19.5
250.9
9.6
1,212.7
179.8
1,149.9
1,027.5
515.5 | 359.9
75,586.2
304.7
464.0
435.9
293.3
523.0
2,020.9
549.0
440.1 | 735.8
50,432.1
411.2
194.3
97.7
65.4
216.5
985.0
459.5
567.7 | 269.1
55,394.2
130.8
356.8
390.8
189.9
431.5
1,499.9
0.0
0.0 | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-1-3H MB (Infill #1) LACEY 12-10-2H (Infill #2) | PDP-APO JCING PNP PNP PNP PNP PNP PNP PUD-DUC PUD-DUC PUD-DUC PUD-DUC PUD-DUC PUD-DUC PUD-DUC | BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 10 152N 92W 25 153N 92W 2-3 152N 92W 10-11 152N-92W | 0.000
0.067
0.292
0.020
0.128
0.005
0.015
0.131
0.128
0.065 | 0.000
0.054
0.245
0.017
0.106
0.004
0.012
0.109
0.106
0.054 | 19.17
21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.92
26.83
26.92 | 01/2021
11/2021
11/2021
11/2021
11/2021
11/2021
11/2021
11/2022
01/2022
01/2022
01/2022
01/2022 | 90.9
20,192.0
173.9
107.2
45.1
103.3
91.5
521.0
549.0
440.1
440.1
439.9 | 411.2
194.3
97.7
65.4
216.5
985.0
459.5
567.7
567.4 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9
135.9
63.4
78.3
78.3 | 0.0
1,097.6
9.5
26.3
0.8
10.9
0.4
47.8
6.5
48.1
46.6
23.6 | 0.0
1,823.1
20.0
42.6
1.5
6.2
0.8
71.1
4.9
55.5
53.7
27.3 | 0.0
281.4
3.1
6.6
0.2
1.0
0.1
11.0 | 0.0
90,402.9
796.3
2,132.6
63.4
800.2
33.0
3,825.6
459.7
3,639.2
3,519.8
1,786.9 | 54.8
113.4
3.0
39.9
1.6
212.6
42.0
301.1
291.2
147.9 | 290.6 942.3 28.0 306.1 14.2 1,581.1 72.1 842.7 818.8 415.8 | 2,902.2
22.3
96.0
6.3
43.1
1.7
169.4
119.4
757.8
817.4
422.2 | 0.0
47,680.8
428.7
981.0
26.0
411.3
15.5
1,862.5 | 0.0
30,458.7
312.9
619.8
19.5
250.9
9.6
1,212.7
179.8
1,149.9
1,027.5
515.5
1,111.7 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 439.9 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.4 | 269.1
55,394.2
130.8
356.8
390.8
189.9
431.5
1,499.9
0.0
0.0
0.0 | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-1-3H MB (Infill #1) LACEY 13-10-2H (Infill #2) LACEY 13-10-2H (Infill #2) LACEY 13-10-HU MB #1 LACEY 14-3-2XH (Infill #1) | PDP-APO JCING PNP PNP PNP PNP PNP PNP PUD-DUC PUD-DUC PUD-DUC PUD-DUC PUD-DUC PUD-DUC | BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 10 152N 92W 25 153N 92W 2-3 152N 92W 10-11 152N-92W 10-11 /14-15 152N-92W 2-3 / 10-11 152N 92W 2-3 /
10-11 152N 92W | 0.000
0.067
0.292
0.020
0.128
0.005
0.015
0.131
0.128
0.065
0.129 | 0.000
0.054
0.245
0.017
0.106
0.004
0.012
0.109
0.106
0.054
0.108 | 19.17
21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.92
26.83
26.92
26.92
26.92 | 01/2021
11/2021
11/2021
11/2021
11/2021
11/2021
01/2022
01/2022
01/2022
01/2022
01/2022 | 90.9
20,192.0
173.9
107.2
45.1
103.3
91.5
521.0
549.0
440.1
440.1
439.9
440.1 | 690.0
46,728.9
411.2
194.3
97.7
65.4
216.5
985.0
459.5
567.7
567.4
567.7 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9
135.9
63.4
78.3
78.3
78.3
78.3 | 0.0
1,097.6
9.5
26.3
0.8
10.9
0.4
47.8
6.5
48.1
46.6
23.6
47.3 | 0.0
1,823.1
20.0
42.6
1.5
6.2
0.8
71.1
4.9
55.5
53.7
27.3
54.6
54.6 | 0.0 281.4 3.1 6.6 0.2 1.0 0.1 11.0 0.8 8.6 8.3 4.2 8.4 | 0.0
90,402.9
796.3
2,132.6
63.4
800.2
33.0
3,825.6
459.7
3,639.2
1,786.9
3,579.5 | 54.8
113.4
3.0
39.9
1.6
212.6
42.0
301.1
291.2
147.9
296.2 | 0.0
34,297.1
290.6
942.3
28.0
306.1
14.2
1,581.1
72.1
842.7
818.8
415.8
830.8 | 2,902.2
22.3
96.0
6.3
43.1
1.7
169.4
119.4
757.8
817.4
422.2
764.3 | 0.0
47,680.8
428.7
981.0
26.0
411.3
15.5
1,862.5
226.1
1,737.6
1,592.3
801.0
1,688.3
1,688.3 | 0.0
30,458.7
312.9
619.8
19.5
250.9
9.6
1,212.7
179.8
1,149.9
1,027.5
515.5 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 440.1 439.9 440.1 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.4 567.7 | 269.1
55,394.2
130.8
356.8
390.8
189.9
431.5
1,499.9
0.0
0.0
0.0
0.0 | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-1-3H MB (Infill #1) LACEY 13-10HU MBI #1 LACEY 14-3-2XH (Infill #2) LACEY 14-3-3XH (Infill #2) LACEY 14-3-3XH (Infill #2) LACEY 43-3-2HMB (Infill #2) | PDP-APO JCING PNP PNP PNP PNP PNP PNP PUD-DUC | BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 33 154N 91W 10 152N 92W 25 153N 92W 2-3 152N 92W 10-11 152N-92W 10-11 152N-92W 2-3 / 10-11 152N 92W | 0.000
0.067
0.292
0.020
0.128
0.005
0.1131
0.128
0.065
0.129
0.129
0.129 | 0.000
0.054
0.245
0.017
0.106
0.004
0.012
0.109
0.106
0.054
0.108
0.108 | 19.17
21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.92
26.92
26.92
26.92
26.92
26.92 | 01/2021
11/2021
11/2021
11/2021
11/2021
11/2021
11/2021
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022 | 90.9 20,192.0 173.9 107.2 45.1 103.3 91.5 521.0 549.0 440.1 439.9 440.1 440.1 440.1 440.1 | 690.0
46,728.9
411.2
194.3
97.7
65.4
216.5
985.0
459.5
567.7
567.7
567.7
567.7 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9
135.9
63.4
78.3
78.3
78.3
78.3
78.3 | 0.0
1,097.6
9.5
26.3
0.8
10.9
0.4
47.8
6.5
48.1
46.6
23.6
47.3
47.3
47.3 | 0.0
1,823.1
20.0
42.6
1.5
6.2
0.8
71.1
4.9
55.5
53.7
27.3
54.6
54.6
55.5 | 0.0 281.4 3.1 6.6 0.2 1.0 0.1 11.0 0.8 8.6 8.3 4.2 8.4 8.4 8.4 8.6 | 0.0
90,402.9
796.3
2,132.6
63.4
800.2
33.0
3,825.6
459.7
3,639.2
3,519.8
1,786.9
3,579.5
3,679.5 | 54.8
113.4
3.0
39.9
1.6
212.6
42.0
301.1
291.2
147.9
296.2
296.2
301.1 | 0.0
34,297.1
290.6
942.3
28.0
306.1
14.2
1,581.1
72.1
842.7
818.8
415.8
830.8
830.8
842.7 | 2,902.2
22.3
96.0
6.3
43.1
1.7
169.4
119.4
757.8
817.4
422.2
764.3
759.0 | 0.0
47,680.8
428.7
981.0
26.0
411.3
15.5
1,862.5
226.1
1,737.6
1,592.3
801.0
1,688.3
1,688.3 | 0.0
30,458.7
312.9
619.8
19.5
250.9
9.6
1,212.7
179.8
1,49.9
1,027.5
515.5
1,111.7
1,148.9 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 439.9 440.1 440.1 440.1 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 567.7 567.7 567.7 | 269.1
55,394.2
130.8
356.8
390.8
189.9
431.5
1,499.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-1-3H MB (Infill #1) LACEY 13-10-2H (Infill #2) LACEY 13-10HU MB #1 LACEY 14-3-3XH (Infill #1) LACEY 14-3-3XH (Infill #2) LACEY 43-3XH (Infill #2) LACEY 43-3-2H MB (Infill #2) LACEY 43-2HMB (Infill #2) | PDP-APO CCING PNP PNP PNP PNP PNP PNP PNP PND-DUC PUD-DUC | BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 10 152N 92W 2-3 152N 92W 10-11 152N-92W 10-11 152N-92W 2-3 / 10-11 152N 92W | 0.000
0.067
0.292
0.020
0.128
0.005
0.015
0.131
0.128
0.065
0.129
0.129
0.131
0.013 | 0.000
0.054
0.017
0.106
0.004
0.012
0.109
0.106
0.054
0.108
0.109
0.010 | 19.17
21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92 | 01/2021
11/2021
11/2021
11/2021
11/2021
11/2021
11/2021
11/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022 | 90.9
20,192.0
173.9
107.2
45.1
103.3
91.5
521.0
440.1
440.1
440.1
440.1
440.1
440.1
440.1 | 690.0
46,728.9
411.2
194.3
97.7
65.4
216.5
985.0
459.5
567.7
567.4
567.7
567.7
567.7 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9
135.9
63.4
78.3
78.3
78.3
78.3
78.3 | 0.0
1,097.6
9.5
26.3
0.8
10.9
0.4
47.8
6.5
48.1
46.6
23.6
47.3
47.3
47.3 | 0.0 1,823.1 20.0 42.6 42.6 6.2 0.8 71.1 4.9 55.5 53.7 27.3 54.6 54.6 55.5 5.4 | 0.0
281.4
3.1
6.6
0.2
1.0
0.1
11.0
0.8
8.6
8.3
4.2
8.4
8.4
8.4
8.6
0.8 | 0.0 90,402.9 796.3 2,132.6 63.4 800.2 33.0 3,825.6 459.7 3,639.2 3,519.8 1,786.9 3,579.5 3,639.2 3,52.3 | 0.0
5,522.9
54.8
113.4
3.0
39.9
1.6
212.6
42.0
301.1
291.2
147.9
296.2
296.2
301.1
292.2 | 0.0 34,297.1 290.6 942.3 28.0 306.1 14.2 1,581.1 72.1 842.7 818.8 415.8 830.8 830.8 842.7 86.8 | 2,902.2 22.3 96.0 6.3 43.1 1.7 169.4 119.4 757.8 817.4 422.2 764.3 759.0 85.6 | 0.0
47,680.8
428.7
981.0
26.0
411.3
15.5
1,862.5
226.1
1,737.6
1,592.3
801.0
1,688.3
1,736.4
150.7 | 0.0
30,458.7
312.9
619.8
19.5
250.9
9.6
1,212.7
179.8
1,49.9
1,027.5
515.5
1,111.7
1,111.7
1,148.9
96.2 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 440.1 440.1 440.1 440.1 440.1 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.4 567.7 567.7 565.8 | 269.1
55,394.2
130.8
356.8
390.8
189.9
431.5
1,499.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-1-3H MB (Infill #1) LACEY 13-10-2H (Infill #2) LACEY 13-10HU MB #1 LACEY 14-3-2XH (Infill #1) LACEY 14-3-2XH (Infill #2) LACEY 43-2HMB (Infill #2) LACEY 43-2HMB (Infill #2) LACEY 63-2HMB (Infill #2) LACEY 64-3-2HMB (Infill #2) | PDP-APO CCING PNP PNP PNP PNP PNP PNP PNP PUD-DUC | BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 10 152N 92W 25 153N 92W 10-11 152N-92W 10-11 152N-92W 2-3 10-11 152N 92W 2-3 152N 92W 2-3 152N 92W 2-11/1-12 152N 92W 2-11/1-12 152N-92W | 0.000
0.067
0.292
0.020
0.128
0.005
0.015
0.131
0.128
0.065
0.129
0.129
0.131
0.013 | 0.000
0.054
0.017
0.106
0.004
0.012
0.109
0.106
0.054
0.108
0.108
0.109
0.011 | 19.17
21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92 | 01/2021
11/2021
11/2021
11/2021
11/2021
11/2021
11/2021
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022 | 90.9
20,192.0
173.9
107.2
45.1
103.3
91.5
521.0
549.0
440.1
440.1
440.1
440.1
440.1
440.1
440.1
440.2
440.1 | 690.0 46,728.9 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 567.7 567.7 565.8 567.7 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9
135.9
63.4
78.3
78.3
78.3
78.3
78.3
78.3 | 0.0
1,097.6
9.5
26.3
0.8
10.9
0.4
47.8
6.5
48.1
46.6
23.6
47.3
47.3
47.3 | 0.0 1,823.1 20.0 42.6 1.5 6.2 0.8 71.1 4.9 55.5 53.7 27.3 54.6 54.6 55.5 5.4 27.3 | 0.0
281.4
3.1
6.6
0.2
1.0
0.1
11.0
0.8
8.6
8.3
4.2
8.4
8.6
0.8
8.4 | 0.0 90,402.9 796.3 2,132.6 63.4 800.2 33.0 3,825.6 459.7 3,639.2 3,519.8 1,786.9 3,579.5 3,639.2 352.3 1,791.4 | 54.8
113.4
3.0
39.9
1.6
212.6
42.0
301.1
291.2
147.9
296.2
301.1
29.2
148.2 |
0.0
34,297.1
290.6
942.3
28.0
306.1
14.2
1,581.1
72.1
842.7
818.8
830.8
830.8
830.8
842.7
86.8
415.8 | 2,902.2
22.3
96.0
6.3
43.1
1.7
169.4
119.4
757.8
817.4
422.2
764.3
759.0
85.6 | 0.0
47,680.8
428.7
981.0
26.0
411.3
15.5
1,862.5
226.1
1,737.6
1,592.3
801.0
1,688.3
1,736.4
150.7
826.8 | 0.0
30,458.7
312.9
619.8
19.5
250.9
9.6
1,212.7
179.8
1,149.9
1,027.5
1,111.7
1,148.9
96.2
537.6 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 439.9 440.1 440.1 440.1 440.1 440.1 440.1 440.2 440.1 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 667.7 567.7 567.7 567.7 567.7 567.7 567.7 567.7 567.8 | 269.1
55,394.2
130.8
356.8
390.8
180.9
431.5
1,499.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-1-3H MB (Infill #1) LACEY 13-10-2H (Infill #2) LACEY 14-3-2XH (Infill #2) LACEY 14-3-2XH (Infill #2) LACEY 32-3HMB (Infill #2) LACEY 43-2XHMB (Infill #2) LACEY 43-2XHMB (Infill #2) LACEY 43-2XHMB (Infill #2) LACEY 43-2TMB (Infill #2) LEHR | PDP-APO ICING PNP PNP PNP PNP PNP PNP PND-DUC PUD-DUC | BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 33 154N 91W 10 152N 92W 25 153N 92W 2-3 152N 92W 10-11 152N-92W 2-3 10-11 152N-92W 2-3 10-11 152N 92W 2-3 152N 92W 2-11/1-12 152N-92W 2-11/1-12 152N-92W 2-11/1-12 152N-92W 2-128/33-34 154N-91W | 0.000
0.067
0.292
0.020
0.128
0.005
0.131
0.128
0.065
0.129
0.129
0.131
0.013
0.065
0.055 | 0.000
0.054
0.017
0.106
0.004
0.012
0.109
0.106
0.054
0.108
0.109
0.011
0.054
0.109 | 19.17
21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
27.17 | 01/2021
11/2021
11/2021
11/2021
11/2021
11/2021
11/2021
11/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022 | 90.9 20,192.0 173.9 107.2 45.1 103.3 91.5 521.0 549.0 440.1 440.1 440.1 439.9 440.1 440.1 439.2 440.1 440.1 | 690.0 46,728.9 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 568.8 567.7 567.7 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9
135.9
63.4
78.3
78.3
78.3
78.3
78.3
78.3 | 0.0
1,097.6
9.5
26.3
0.8
10.9
0.4
47.8
6.5
48.1
46.6
23.6
47.3
47.3
47.3
47.3
23.7
20.1 | 0.0 1,823.1 20.0 42.6 1.5 6.2 0.8 71.1 4.9 55.5 53.7 27.3 54.6 54.6 55.5 5.4 27.3 23.2 | 0.0
281.4
3.1
6.6
0.2
1.0
0.1
11.0
0.8
8.6
8.3
4.2
8.4
8.4
8.6
0.8
4.2
3.3 | 0.0 90,402.9 796.3 2,132.6 63.4 800.2 33.0 3,825.6 459.7 3,639.2 3,519.8 1,786.9 3,579.5 3,639.2 352.3 1,791.4 1,520.8 | 54.8
113.4
30.9
1.6
212.6
42.0
301.1
291.2
147.9
296.2
296.2
301.1
29.2
148.2 | 0.0
34,297.1
290.6
942.3
28.0
306.1
14.2
1,581.1
72.1
842.7
818.8
830.8
830.8
830.8
842.7
86.8
415.8
366.3 | 2,902.2 22.3 96.0 6.3 43.1 1.7 169.4 119.4 757.8 817.4 422.2 764.3 759.0 85.6 400.6 328.3 | 0.0
47,680.8
428.7
981.0
26.0
411.3
15.5
1,862.5
226.1
1,737.6
1,592.3
801.0
1,688.3
1,736.4
150.7
826.8
700.4 | 0.0
30,458.7
312.9
619.8
19.5
250.9
9.6
1,212.7
179.8
1,149.9
1,027.5
515.5
1,111.7
1,148.9
96.2
537.6
446.3 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 440.1 440.1 439.9 440.1 440.1 440.1 440.1 440.1 440.1 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 565.8 567.7 565.8 | 269.1 55,394.2 130.8 356.8 390.8 189.9 431.5 1,499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 13-10-2H (Infill #2) LACEY 13-10-2H (Infill #2) LACEY 13-10HU MB #1 LACEY 14-3-3XH (Infill #2) LACEY 43-2HMB (Infill #2) LACEY 43-2HMB (Infill #2) LACEY 14-3-3XH (Infill #2) LACEY 14-3-3XH (Infill #2) LACEY 14-3-3XH (Infill #2) LACEY MA-2HMB (Infill #2) LACEY MA-2HMB (Infill #2) LEHR LITTLEFIELD 41-2HU MB #1 MAKI 11-27-2HU MAKI 11-27-7HU | PDP-APO JCING PNP PNP PNP PNP PNP PNP PUD-DUC | BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 10 152N 92W 10-11 152N-92W 10-11 152N-92W 10-11 152N 92W 2-3 1 | 0.000
0.067
0.292
0.020
0.128
0.005
0.131
0.128
0.065
0.129
0.131
0.065
0.055 | 0.000
0.054
0.245
0.017
0.106
0.004
0.012
0.109
0.108
0.108
0.109
0.011
0.054
0.046
0.040 | 21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92 | 01/2021
11/2021
11/2021
11/2021
11/2021
11/2021
11/2021
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022 | 90.9 20,192.0 173.9 107.2 45.1 103.3 91.5 521.0 549.0 440.1 439.9 440.1 440.1 440.1 449.2 440.1 449.1 449.1 449.1 449.1 449.1 | 690.0 46,728.9 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.4 567.7 567.8 567.7 565.8 567.7 565.8 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9
135.9
63.4
78.3
78.3
78.3
78.3
78.3
78.3
78.3 | 0.0
1,097.6
9.5
26.3
0.8
10.9
0.4
47.8
6.5
48.1
46.6
23.6
47.3
47.3
48.1
4.7
23.7
20.1 | 0.0 1,823.1 20.0 42.6 1.5 6.2 0.8 71.1 4.9 55.5 53.7 27.3 54.6 54.6 55.5 5.4 27.3 23.2 2.0 | 0.0 281.4 3.1 6.6 0.2 1.0 0.1 11.0 0.8 8.6 8.3 4.2 8.4 8.4 8.6 0.8 4.2 3.6 0.3 | 0.0 90,402.9 796.3 2,132.6 63.4 800.2 33.0 3,825.6 459.7 3,639.2 3,519.8 1,786.9 3,579.5 3,639.2 3,52.3 1,791.4 1,520.8 | 54.8
113.4
3.0
39.9
1.6
212.6
42.0
301.1
291.2
147.9
296.2
301.1
29.2
148.2
129.2 | 0.0
34,297.1
290.6
942.3
28.0
306.1
14.2
1,581.1
72.1
842.7
818.8
830.8
8415.8
830.8
8415.8
36.3
31.5 | 2,902.2
22.3
96.0
6.3
3 43.1
1.7
169.4
119.4
757.8
817.4
422.2
764.3
759.0
85.6
400.6
328.3
29.3 | 0.0
47,680.8
428.7
981.0
26.0
411.3
15.5
1,862.5
226.1
1,737.6
1,592.3
801.0
1,688.3
1,736.4
150.7
826.8
700.4
56.6 |
0.0
30,458.7
312.9
619.8
19.5
250.9
9.6
1,212.7
179.8
1,49.9
1,027.5
515.5
1,111.7
1,111.7
1,111.7
1,418.9
96.2
337.6
446.3
36.8 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 439.9 440.1 440.1 440.1 449.1 449.1 449.1 449.1 449.1 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.4 567.7 567.8 567.7 565.8 567.7 565.8 | 269.1
55,394.2
130.8
356.8
390.8
189.9
431.5
1,499.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-1-3H MB (Infill #1) LACEY 13-10-2H (Infill #2) LACEY 13-10H MB #1 LACEY 14-3-2XH (Infill #2) LACEY 14-3-2XH (Infill #2) LACEY 43-2HMB (Infill #2) LACEY 43-2HMB (Infill #2) LACEY 43-2-10H MB #1 MAKI 11-27-2HU MAKI 11-27-2HU MAKI 11-27-HU NIEMITALO 31-15-2XH | PDP-APO JCING PNP PNP PNP PNP PNP PNP PUD-DUC | BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 10 152N 92W 25 153N 92W 10-11 152N-92W 10-11 152N-92W 2-3 10-11 152N-92W 2-3 10-11 152N-92W 2-3 152N 92W 2-11 / 1-12 152N-92W 2-18 152N 92W 2-19 10-11 152N 92W 2-19 10-11 152N 92W 2-3 152N 92W | 0.000
0.067
0.292
0.020
0.128
0.005
0.131
0.128
0.065
0.129
0.131
0.013
0.065
0.055
0.005 | 0.000
0.054
0.245
0.017
0.106
0.004
0.108
0.108
0.108
0.109
0.011
0.054
0.046
0.004 | 21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92 | 01/2021
11/2021
11/2021
11/2021
11/2021
11/2021
11/2021
11/2021
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022 | 90.9 20,192.0 173.9 107.2 45.1 103.3 91.5 521.0 549.0 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.2 440.1 440.3 | 690.0 46,728.9 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 567.7 567.7 567.7 567.7 568.8 567.7 568.8 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9
135.9
63.4
78.3
78.3
78.3
78.3
78.3
78.3
78.3
78.3 | 0.0
1,097.6
9.5
26.3
0.8
10.9
0.4
47.8
6.5
48.1
46.6
23.6
47.3
48.1
47.3
23.7
20.1
1.7 | 0.0 1,823.1 20.0 42.6 1.5 6.2 0.8 71.1 4.9 55.5 53.7 27.3 54.6 55.5 5.4 47.3 23.2 2.0 3.9 | 0.0 281.4 3.1 6.6 0.2 1.0 0.1 11.0 0.8 8.6 8.3 4.2 8.4 8.4 8.4 8.6 0.8 8.6 0.3 0.6 | 796.3 2,132.6 63.4 800.2 33.0 3,825.6 459.7 3,639.2 3,519.8 1,786.9 3,579.5 3,639.2 352.3 1,791.4 1,520.8 128.0 256.0 | 5,522.9 54.8 113.4 3.0 39.9 1.6 212.6 42.0 301.1 291.2 147.9 296.2 296.2 296.2 148.2 125.7 10.6 21.2 | 0.0
34,297.1
290.6
942.3
28.0
306.1
14.2
1,581.1
72.1
842.7
818.8
830.8
830.8
842.7
86.8
415.8
366.3
31.5
63.1 | 2,902.2 22.3 96.0 6.3 43.1 1.7 169.4 119.4 757.8 817.4 422.2 764.3 759.0 85.6 400.6 328.3 29.2 60.2 | 0.0
47,680.8
428.7
981.0
26.0
411.3
15.5
1,862.5
226.1
1,737.6
1,592.3
801.0
1,688.3
1,736.4
150.7
826.8
700.4
56.6
111.5 | 0.0
30,458.7
312.9
619.8
19.5
250.9
9.6
1,212.7
179.8
1,149.9
1,027.5
1,111.7
1,111.7
1,114.9
96.2
537.6
446.3
36.8
71.9 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.2 440.1 440.1 440.3 440.1 440.1 440.1 440.1 440.3 440.1 440.1 440.3 440.1 440.3 440.1 440.3 440.3 440.1 440.3 440.3 440.3 440.3 440.3 440.3 440.3 440.3 440.3 440.3 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 567.7 567.7 567.7 567.7 567.7 565.8 565.8 | 269.1
55,394.2
130.8
356.8
390.8
189.9
431.5
1,499.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-13H MB (Infill #1) LACEY 14-3-10HU MB #1 LACEY 14-3-12H (Infill #2) LACEY 14-3-3XH (Infill #2) LACEY 14-3-3XH (Infill #2) LACEY 14-3-27HU [Infill #2) LACEY 14-3-27HU [Infill #2) LACEY 14-3-27HU [Infill #2) LACEY 14-3-10HU MB #1 MAKI 11-27-2HU MAKI 11-27-2HU MAKI 11-27-2HU MAKI 11-27-2XH NIEMITALO 31-15-3XH | PDP-APO JCING PNP PNP PNP PNP PNP PNP PUD-DUC | BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 10 152N 92W 10-11 152N-92W 10-11 152N-92W 10-11 152N 92W 2-3 1 | 0.000
0.067
0.292
0.020
0.128
0.005
0.131
0.128
0.065
0.129
0.131
0.065
0.055 | 0.000
0.054
0.245
0.017
0.106
0.004
0.012
0.109
0.108
0.108
0.109
0.011
0.054
0.046
0.040 |
21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92 | 01/2021
11/2021
11/2021
11/2021
11/2021
11/2021
11/2021
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022 | 90.9 20,192.0 173.9 107.2 45.1 103.3 91.5 521.0 549.0 440.1 440.1 440.1 440.1 440.1 440.1 440.1 439.2 440.1 439.2 439.2 439.2 | 690.0 46,728.9 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.4 567.7 567.7 567.7 565.8 565.8 565.8 | 95.2 6,448.6 56.7 26.8 13.5 9.0 29.9 135.9 63.4 78.3 78.3 78.3 78.3 78.3 78.1 78.1 78.1 | 0.0
1,097.6
9.5
26.3
0.8
10.9
0.4
47.8
6.5
48.1
46.6
23.6
47.3
47.3
48.1
4.7
20.1
1.7
3.4 | 0.0 1,823.1 20.0 42.6 1.5 6.2 0.8 71.1 4.9 55.5 53.7 27.3 54.6 54.6 55.5 5.4 27.3 23.2 2.0 3.9 3.9 | 0.0 281.4 3.1 6.6 0.2 1.0 0.1 11.0 0.8 8.6 8.3 4.2 8.4 8.4 8.6 0.8 4.2 3.6 0.3 | 0.0 90,402.9 796.3 2,132.6 63.4 800.2 33.0 3,825.6 459.7 3,639.2 3,519.8 1,786.9 3,579.5 3,639.2 352.3 1,791.4 1,520.8 128.0 256.0 | 54.8
113.4
3.0
39.9
1.6
212.6
42.0
301.1
291.2
147.9
296.2
301.1
29.2
148.2
125.7
10.6
21.2 | 0.0
34,297.1
290.6
942.3
28.0
306.1
14.2
1,581.1
72.1
842.7
818.8
415.8
830.8
842.7
86.8
415.8
315.6
315.6
63.1
63.1 | 2,902.2 22.3 96.0 6.3 43.1 1.7 169.4 119.4 757.8 817.4 422.2 764.3 759.0 85.6 400.6 328.3 29.2 60.2 60.2 | 0.0 47,680.8 428.7 981.0 26.0 411.3 15.5 1,862.5 226.1 1,737.6 1,592.3 801.0 1,688.3 1,736.4 150.7 826.8 700.4 56.6 111.5 | 0.0 30,458.7 312.9 619.8 19.5 250.9 9.6 1,212.7 179.8 1,149.9 1,027.5 515.5 1,111.7 1,148.9 96.2 537.6 446.3 36.8 71.9 70.8 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 440.1 440.1 440.1 440.1 439.2 440.1 440.1 439.2 439.2 439.2 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 567.7 565.8 565.8 565.8 | 269.1 55,394.2 130.8 350.8 390.8 189.9 431.5 1,499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-1-3H MB (Infill #1) LACEY 13-10-2H (Infill #2) LACEY 13-10H MB #1 LACEY 14-3-2XH (Infill #2) LACEY 14-3-2XH (Infill #2) LACEY 43-2HMB (Infill #2) LACEY 43-2HMB (Infill #2) LACEY 43-2-10H MB #1 MAKI 11-27-2HU MAKI 11-27-2HU MAKI 11-27-HU NIEMITALO 31-15-2XH | PDP-APO JCING PNP PNP PNP PNP PNP PNP PUD-DUC | BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 10 152N 92W 25 153N 92W 10-11 152N-92W 10-11 152N-92W 2-3 10-11 152N-92W 2-3 10-11 152N-92W 2-3 152N 92W 2-11 / 1-12 152N-92W 2-18 152N 92W 2-19 10-11 152N 92W 2-19 10-11 152N 92W 2-3 152N 92W | 0.000
0.067
0.292
0.020
0.128
0.005
0.131
0.128
0.065
0.129
0.131
0.013
0.065
0.055
0.005 | 0.000
0.054
0.245
0.017
0.106
0.004
0.108
0.108
0.108
0.109
0.011
0.054
0.046
0.004 | 21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92 | 01/2021
11/2021
11/2021
11/2021
11/2021
11/2021
11/2021
11/2021
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022 | 90.9 20,192.0 173.9 107.2 45.1 103.3 91.5 521.0 549.0 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.2 440.1 440.1 440.2 440.1 440.3 | 690.0 46,728.9 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 567.7 567.7 567.7 567.7 568.8 567.7 568.8 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9
135.9
63.4
78.3
78.3
78.3
78.3
78.3
78.3
78.3
78.3
78.3 |
0.0
1,097.6
9.5
26.3
0.8
10.9
0.4
47.8
6.5
48.1
46.6
23.6
47.3
48.1
47.3
23.7
20.1
1.7 | 0.0 1,823.1 20.0 42.6 1.5 6.2 0.8 71.1 4.9 55.5 53.7 27.3 54.6 55.5 5.4 47.3 23.2 2.0 3.9 | 0.0
281.4
3.1
6.6
0.2
1.0
0.1
11.0
0.8
8.6
8.3
4.2
8.4
8.4
8.6
0.8
4.2
3.6
0.3
0.6
0.6
0.7
0.7
0.7
0.7
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8 | 796.3 2,132.6 63.4 800.2 33.0 3,825.6 459.7 3,639.2 3,519.8 1,786.9 3,579.5 3,639.2 352.3 1,791.4 1,520.8 128.0 256.0 | 5,522.9 54.8 113.4 3.0 39.9 1.6 212.6 42.0 301.1 291.2 147.9 296.2 296.2 296.2 148.2 125.7 10.6 21.2 | 0.0
34,297.1
290.6
942.3
28.0
306.1
14.2
1,581.1
72.1
842.7
818.8
830.8
830.8
842.7
86.8
415.8
366.3
31.5
63.1 | 2,902.2 22.3 96.0 6.3 43.1 1.7 169.4 119.4 757.8 817.4 422.2 764.3 759.0 85.6 400.6 328.3 29.2 60.2 | 0.0
47,680.8
428.7
981.0
26.0
411.3
15.5
1,862.5
226.1
1,737.6
1,592.3
801.0
1,688.3
1,736.4
150.7
826.8
700.4
56.6
111.5 | 0.0
30,458.7
312.9
619.8
19.5
250.9
9.6
1,212.7
179.8
1,149.9
1,027.5
1,111.7
1,111.7
1,114.9
96.2
537.6
446.3
36.8
71.9 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.2 440.1 440.1 440.3 440.1 440.1 440.1 440.1 440.3 440.1 440.1 440.3 440.1 440.3 440.1 440.3 440.3 440.1 440.3 440.3 440.3 440.3 440.3 440.3 440.3 440.3 440.3 440.3 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 567.7 567.7 567.7 567.7 567.7 565.8 565.8 | 269.1
55,394.2
130.8
356.8
390.8
189.9
431.5
1,499.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-1-3H MB (Infill #1) LACEY 13-10-14 (Infill #2) LACEY 13-10H MB #1 LACEY 14-3-2XH (Infill #2) LACEY 14-3-2XH (Infill #2) LACEY 14-3-2XH (Infill #2) LACEY 14-3-2HMB (Infill #2) LACEY 14-3-2THMB (Infill #2) LACEY 14-3-2THMB (Infill #2) LACEY 14-3-2THMB (Infill #2) LEHR LITTLEFIELD 41-2HU MB #1 MAKI 11-27-2HU MAKI 11-27-2HU MAKI 11-27-3XH NIEMITALO 31-15-3XH SUBTOTAL PUD-DUC | PDP-APO JCING PNP PNP PNP PNP PNP PND-DUC PUD-DUC | BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN
BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 10 152N 92W 25 153N 92W 2-3 152N 92W 10-11 152N-92W 2-3 / 10-11 152N-92W 2-3 / 10-11 152N 92W 2-3 152N 92W 2-11 / 1-12 152N-92W 2-12 154N-91W 2-2-3/26-27 154N-91W 15-22/14-23 154N-91W | 0.000
0.067
0.292
0.020
0.128
0.005
0.131
0.128
0.065
0.129
0.129
0.129
0.129
0.129
0.013
0.065
0.055
0.005 | 0.000
0.054
0.017
0.106
0.004
0.012
0.108
0.108
0.109
0.108
0.109
0.054
0.046
0.054
0.008 | 19.17
21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.93
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.93
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92 | 01/2021
11/2021
11/2021
11/2021
11/2021
11/2021
11/2021
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022 | 90.9 20,192.0 173.9 107.2 45.1 103.3 91.5 521.0 549.0 440.1 440.1 449.1 440.1 440.1 440.1 440.1 440.1 440.2 439.2 440.1 439.2 439.2 5,826.3 | 690.0 46,728.9 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 567.7 567.7 567.7 568.8 565.8 565.8 7,264.3 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9
135.9
63.4
78.3
78.3
78.3
78.3
78.3
78.1
78.1
78.1
1,002.5 | 0.0
1,097.6
9.5
26.3
0.8
10.9
0.4
47.8
6.5
48.1
46.6
47.3
47.3
47.3
47.3
47.3
47.3
47.3
47.3 | 0.0 1,823.1 20.0 42.6 1.5 6.2 0.8 71.1 4.9 55.5 53.7 27.3 54.6 54.6 54.6 55.5 5.4 27.3 23.2 2.0 3.9 3.9 371.7 | 0.0 281.4 3.1 6.6 0.2 1.0 0.1 11.0 0.8 8.6 8.3 4.2 8.4 8.4 8.6 0.8 4.2 3.6 0.6 57.4 | 796.3 2,132.6 63.4 800.2 33.0 3,825.6 459.7 3,639.2 3,519.8 1,786.9 3,579.5 3,539.2 352.3 1,791.4 1,520.8 128.0 256.0 24,508.3 | 5,522.9 54.8 113.4 3.0 39.9 1.6 212.6 42.0 301.1 291.2 147.9 296.2 296.2 296.2 125.7 10.6 21.2 2,031.9 | 0.0
34,297.1
290.6
942.3
28.0
306.1
14.2
1,581.1
72.1
842.7
818.8
830.8
830.8
842.7
86.8
415.8
366.3
31.5
63.1
5,680.1 | 2,902.2 22.3 96.0 6.3 43.1 1.7 169.4 119.4 757.8 817.4 422.2 764.3 754.3 759.0 85.6 328.3 29.2 61.5 5,369.8 | 0.0
47,680.8
428.7
981.0
26.0
411.3
15.5
1,862.5
226.1
1,737.6
1,592.3
801.0
1,688.3
1,736.4
150.7
826.8
700.4
56.6
111.5
110.2
11,426.5 | 0.0 30,458.7 312.9 619.8 19.5 250.9 9.6 1,212.7 179.8 1,149.9 1,027.5 1,111.7 1,1148.9 96.2 537.6 446.3 36.8 71.9 70.8 7,504.5 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 440.1 449.1 449.1 440.1 440.1 439.2 439.2 439.2 439.2 5,826.3 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 567.7 567.7 567.7 565.8 565.8 7,264.3 | 269.1 55,394.2 130.8 356.8 390.8 189.9 431.5 1,499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 13-10-2H (Infill #1) LACEY 13-10-2H (Infill #2) LACEY 13-10HU MB #1 LACEY 13-10HU MB #1 LACEY 14-3-3XH (Infill #2) LACEY 43-2HMB (Infill #2) LACEY 14-2-1-2H (Infill #2) LACEY 14-2-1-3H (Infill #2) LACEY 14-3-3XH (Infill #3) LEHR LITTLEFIELD 41-2HU MB #1 MAKI 11-27-U MAKI 11-27-U MIEMITALO 31-15-3XH SUBTOTAL PUD-DUC ABBOTT - TFK INFILL #1 (E-W) | PDP-APO JCING PNP PNP PNP PNP PNP PUD-DUC | BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 10 152N 92W 10-11 152N-92W 10-11 152N-92W 10-11 152N-92W 2-3 1 152N 92W 2-3 152N 92W 2-1/ 1-12 152N-92W 2-1/ 1-12 152N-92W 2-1/ 1-12 152N-91W 15-22/14-23 154N-91W 15-22/14-23 154N-91W 15-22/14-23 154N-91W | 0.000
0.067
0.292
0.020
0.128
0.005
0.015
0.131
0.128
0.065
0.129
0.131
0.065
0.050
0.010
0.010 | 0.054
0.245
0.017
0.106
0.004
0.108
0.108
0.108
0.108
0.109
0.054
0.004
0.004
0.004 | 19.17
21.75
21.09
16.58
22.67
22.92
17.58
26.92
26.92
26.92
26.92
26.92
26.92
26.42
26.42
26.42 | 01/2021 111/2021 111/2021 111/2021 111/2021 111/2021 111/2021 11/2021 01/2022 01/2022 01/2022
01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 | 90.9 20,192.0 173.9 107.2 45.1 103.3 91.5 521.0 549.0 440.1 439.9 440.1 440.1 440.1 449.2 440.1 439.2 439.2 439.2 5,826.3 | 690.0 46,728.9 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.4 567.7 567.7 565.8 565.8 565.8 7,264.3 | 95.2 6,448.6 56.7 26.8 13.5 9.0 29.9 135.9 63.4 78.3 78.3 78.3 78.3 78.3 78.1 78.1 1,002.5 | 0.0
1,097.6
9.5
26.3
0.8
10.9
0.4
47.8
6.5
48.1
46.6
23.6
47.3
48.1
4.7
23.7
20.1
1.7
3.4
3.4
3.4
3.4
3.4
3.4 | 0.0 1,823.1 20.0 42.6 1.5 6.2 0.8 71.1 4.9 55.5 53.7 27.3 54.6 54.6 55.5 2.0 3.9 3.9 371.7 | 0.0 281.4 3.1 6.6 0.2 1.0 0.1 11.0 0.8 8.6 8.3 4.2 8.4 8.6 0.8 4.2 3.6 0.6 57.4 | 0.0 90,402.9 796.3 2,132.6 63.4 800.2 33.0 3,825.6 459.7 3,639.2 3,519.8 1,786.9 3,579.5 3,639.2 3,52.3 1,791.4 1,520.8 128.0 256.0 24,508.3 | 54.8
113.4
3.0
39.9
1.6
212.6
42.0
301.1
291.2
147.9
296.2
301.1
29.2
148.2
125.7
10.6
21.2
21.2
22,031.9 | 0.0 34,297.1 290.6 942.3 28.0 306.1 14.2 1,581.1 72.1 842.7 818.8 415.8 830.8 842.7 86.8 363.3 31.5 63.1 5,680.1 | 2,902.2 22.3 96.0 6.3 3 43.1 1.7 169.4 119.4 757.8 817.4 422.2 764.3 759.0 85.6 400.6 328.3 29.2 60.2 61.5 5,369.8 | 0.0 47,680.8 428.7 981.0 26.0 411.3 15.5 1,862.5 226.1 1,737.6 1,592.3 801.0 1,688.3 1,736.4 150.7 826.8 700.4 56.6 111.5 110.2 11,426.5 5.6 | 0.0 30,458.7 312.9 619.8 19.5 250.9 1,212.7 179.8 1,149.9 1,027.5 515.5 1,111.7 1,148.9 96.2 537.6 446.3 3.6.8 71.9 70.8 7,504.5 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 439.9 440.1 440.1 449.1 439.2 440.1 439.2 439.2 5,826.3 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 667.7 567.4 567.7 567.7 565.8 567.7 565.8 565.8 7,264.3 | 269.1 55,394.2 130.8 356.8 390.8 189.9 431.5 1,499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-1-3H MB (Infill #1) LACEY 13-10-2H (Infill #2) LACEY 13-10-2H (Infill #2) LACEY 13-3-XH (Infill #2) LACEY 43-3-XH (Infill #2) LACEY 43-2HMB (Infill #2) LACEY 43-2HMB (Infill #2) LACEY 14-3-XH 13-10-XH LA | PDP-APO JCING PNP PNP PNP PNP PNP PNP PUD-DUC | BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 14 154N 92W 10 152N 92W 25 153N 92W 10-11 152N-92W 10-11 152N-92W 2-3 1-10-11 152N-92W 2-3 152N 92W 2-3 152N 92W 2-11/1-12 152N-92W 2-3 152N 92W 2-11/1-12 152N-92W 2-11/1-12 152N-91W 15-22/14-23 154N-91W 15-22/14-23 154N-91W 15-22/14-23 154N-91W 7-8/17-18 153N-91W 7-8/17-18 153N-91W | 0.000
0.067
0.292
0.020
0.128
0.005
0.015
0.131
0.128
0.065
0.129
0.131
0.013
0.065
0.055
0.005
0.005 | 0.000
0.054
0.245
0.017
0.106
0.004
0.108
0.108
0.108
0.109
0.001
0.054
0.004
0.008 | 19.17
21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92 | 11/2021
111/2021
111/2021
111/2021
11/2021
11/2021
11/2021
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022 | 90.9 20,192.0 173.9 107.2 45.1 103.3 91.5 521.0 549.0 440.1 440.1 440.1 440.1 440.1 440.1 440.2 439.2 440.2 439.2 5,826.3 | 46,728.9 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 567.7 567.7 565.8 565.8 7,264.3 230.5 | 95.2
6,448.6
56.7
26.8
13.5
9.0
29.9
135.9
63.4
78.3
78.3
78.3
78.3
78.3
78.3
78.3
78.3
18.1
78.1
1,002.5
31.8
55.3 | 0.0 1,097.6 9.5 26.3 0.8 10.9 0.4 47.8 6.5 48.1 46.6 47.3 48.1 47.7 23.7 20.1 1.7 3.4 3.4 324.6 0.4 | 0.0 1,823.1 20.0 42.6 1.5 6.2 0.8 71.1 4.9 55.5 53.7 27.3 54.6 55.5 5.4 27.3 23.2 2.0 3.9 3.9 371.7 0.4 0.6 | 0.0 281.4 3.1 6.6 0.2 1.0 0.1 11.0 0.8 8.6 8.3 4.2 8.4 8.6 0.8 3.0 6 0.6 57.4 | 796.3 2,132.6 63.4 800.2 33.0 3,825.6 459.7 3,639.2 3,519.8 1,786.9 3,579.5 3,639.2 352.3 1,791.4 1,520.8 128.0 256.0 24,508.3 | 5,522.9 54.8 113.4 3.0 39.9 1.6 212.6 42.0 301.1 291.2 147.9 296.2 296.2 212.5 7 10.6 6 21.2 2,031.9 | 0.0 34,297.1 290.6 942.3 28.0 306.1 14.2 1,581.1 72.1 842.7 818.8 830.8 842.7 86.8 840.8 840.8 31.5 63.1 63.1 5,680.1 | 2,902.2 22.3 96.0 6.3 43.1 1.7 169.4 119.4 757.8 817.4 422.2 764.3 759.0 85.6 400.6 328.3 29.2 60.2 61.5 5,369.8 | 0.0 47,680.8 428.7 981.0 26.0 411.3 15.5 1,862.5 226.1 1,737.6 1,592.3 801.0 1,688.3 1,736.4 150.7 826.8 700.4 56.6 611.5 110.2 11,426.5 5.6 13.8 | 0.0 30,458.7 312.9 619.8 19.5 250.9 9.6 1,212.7 179.8 1,149.9 1,027.5 1,111.7 1,148.9 96.2 537.6 446.3 36.8 7,19 70.8 7,504.5 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 440.1 440.1 440.1 440.1 440.1 440.1 440.2 439.2 439.2 5,826.3 216.4 313.9 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 667.7 567.7 567.7 567.7 567.7 565.8 565.8 7,264.3 230.5 | 269.1 55,394.2 130.8 356.8 390.8 189.9 431.5 1,499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-13H MB (Infill #1) LACEY 13-10-14 (Infill #2) LACEY 13-10HU MB #1 LACEY 14-3-3XH (Infill #2) LACEY 14-3-3XH (Infill #2) LACEY 14-3-3XH (Infill #2) LEHR LITTLEFIELD 41-2HU MB #1 MAKI 11-27-2HU MAKI 11-27-2HU MAKI 11-27-2HU NIEMITALO 31-15-3XH SUBTOTAL PUD-DUC ABBOTT - TFK INFILL #1 (E-W) ABBOTT - MB | PDP-APO CING PNP PNP PNP PNP PNP PNP PNP PND-DUC PUD-DUC | BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 33 154N 91W 10 152N 92W 25 153N 92W 10-11 152N-92W 10-11 152N-92W 2-3 / 10-11 152N 92W 2-3 / 10-11 152N 92W 2-3 / 10-11 152N 92W 2-3 152N 92W 2-11 / 1-12 152N-92W 2-23/26-27 154N-91W 15-22/14-23 154N-91W 15-22/14-23 154N-91W 15-22/14-23 154N-91W 7-8/17-18 153N-91W 7-8/17-18 153N-91W 7-8/17-18 153N-91W | 0.000
0.067
0.292
0.020
0.128
0.005
0.015
0.131
0.128
0.065
0.129
0.131
0.013
0.065
0.019
0.010
0.005
0.005
0.005 | 0.054
0.245
0.017
0.106
0.004
0.108
0.108
0.109
0.014
0.004
0.004
0.004
0.004 |
21.75
21.05
16.58
22.67
22.92
17.58
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.93
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92 | 01/2021 11/2021 11/2021 11/2021 11/2021 11/2021 11/2021 11/2020 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 10/2022 10/2022 10/2022 10/2022 10/2022 10/2022 10/2022 10/2022 10/2022 10/2022 | 90.9 20,192.0 173.9 107.2 45.1 103.3 91.5 521.0 549.0 440.1 440.1 440.1 440.1 440.1 440.1 440.1 439.2 440.1 439.2 5,826.3 | 46,728.9 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 567.7 567.7 565.8 565.8 565.8 7,264.3 230.5 400.6 | 95.2 6,448.6 56.7 26.8 13.5 9.0 29.9 135.9 63.4 78.3 78.3 78.3 78.3 78.1 78.1 1,002.5 | 0.0 1,097.6 9.5 26.3 0.8 10.9 0.4 47.8 6.5 48.1 46.6 23.6 47.3 47.3 48.1 1.7 20.1 1.7 3.4 324.6 0.4 0.5 | 0.0 1,823.1 20.0 42.6 1.5 6.2 0.8 71.1 4.9 55.5 53.7 27.3 54.6 54.6 55.5 5.4 27.3 23.2 2.0 3.9 3.9 3.71.7 0.4 0.6 1.8 | 0.0 281.4 3.1 6.6 0.2 1.0 0.1 11.0 0.8 8.6 8.3 4.2 8.4 8.4 8.6 0.8 4.2 3.6 6 57.4 0.1 0.1 0.3 | 0.0 90,402.9 796.3 2,132.6 63.4 800.2 33.0 3,825.6 459.7 3,639.2 3,519.8 1,786.9 3,579.5 3,579.5 3,579.5 3,579.5 3,52.3 1,791.4 1,520.8 128.0 256.0 24,508.3 | 54.8 113.4 3.0 39.9 1.6 212.6 42.0 301.1 291.2 147.9 296.2 296.2 301.1 29.2 148.2 125.7 10.6 21.2 2,031.9 | 0.0 34,297.1 290.6 942.3 28.0 306.1 14.2 1,581.1 72.1 842.7 818.8 415.8 830.8 830.8 842.7 86.8 415.8 31.5 63.1 5,680.1 | 2,902.2 22.3 96.0 6.3 43.1 1.7 169.4 119.4 757.8 817.4 422.2 764.3 759.0 85.6 400.6 328.3 29.2 60.5 5,369.8 12.7 12.8 25.6 | 0.0 47,680.8 428.7 981.0 26.0 411.3 15.5 1,862.5 226.1 1,737.6 1,592.3 801.0 1,688.3 1,736.4 150.7 826.8 700.4 56.6 111.5 110.2 11,426.5 | 0.0 30,458.7 312.9 619.8 19.5 250.9 9.6 1,212.7 179.8 1,149.9 1,027.5 515.5 1,111.7 1,118.9 96.2 537.6 446.3 36.8 71.9 70.8 8.3 30.2 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 440.1 440.1 440.1 440.1 440.1 439.2 439.2 5,826.3 216.4 313.9 440.3 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 667.7 567.7 567.7 567.7 567.7 565.8 565.8 7,264.3 230.5 400.6 568.0 | 269.1 55,394.2 130.8 350.8 389.9 431.5 1,499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-1-3H MB (infill #1) LACEY 13-10-2H (infill #2) LACEY 13-10-2H (infill #2) LACEY 13-3-3XH (infill #2) LACEY 14-3-3XH (infill #2) LACEY 14-3-XHB (infill #2) LACEY 14-3-XHB (infill #2) LACEY 14-3-XHB (infill #2) LEHR LITTLEFIELD 41-2HU MB #1 MAKI 11-27-2HU MAKI 11-27-2HU MAKI 11-27-BU NIEMITALO 31-15-3XH SUBTOTAL PUD-DUC ABBOTT - FK INFILL #1 (E-W) ABBOTT 1-18MB (infill #1) ABBOTT 1-18MB (infill #1) | PDP-APO ICING PNP PNP PNP PNP PNP PNP PUD-DUC PUD-PUD PUD PUD PUD PUD PUD PUD PUD | BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 14 154N 92W 10 152N 92W 25 153N 92W 10-11 152N-92W 10-11 152N-92W 2-3 / 10-11 152N 92W 2-1/ 1-12 152N-92W 1-1/ 1-12 152N-91W 15-22/14-23 154N-91W 15-22/14-23 154N-91W 15-8/17-18 153N-91W 7-8/17-18 153N-91W 17-18 153N 91W 17-18 153N 91W | 0.000
0.067
0.292
0.020
0.128
0.005
0.015
0.131
0.128
0.065
0.129
0.131
0.065
0.005
0.001
0.001
0.001
0.002
0.002
0.002 | 0.000
0.054
0.017
0.106
0.004
0.106
0.054
0.108
0.108
0.094
0.005
0.004
0.004
0.008 | 19.17
21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.92
26.92
26.92
26.92
26.92
26.42
26.42
26.42
26.42
27.83
27.83 | 11/2021
111/2021
111/2021
111/2021
111/2021
111/2021
111/2021
111/2021
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022 | 90.9 20,192.0 173.9 107.2 45.1 103.3 91.5 521.0 549.0 440.1 439.9 440.1 440.1 440.1 439.2 439.2 439.2 5,26.3 216.4 313.9 440.3 440.3 | 690.0 46,728.9 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.4 567.7 567.7 565.8 567.7 565.8 7,264.3 230.5 400.6 568.0 | 95.2 6,448.6 56.7 26.8 13.5 9.0 29.9 135.9 63.4 78.3 78.3 78.3 78.3 78.3 78.1 1,002.5 | 0.0 1,097.6 9.5 26.3 0.8 10.9 0.4 47.8 6.5 48.1 46.6 23.6 47.3 48.1 4.7 23.7 20.1 1.7 3.4 324.6 0.4 0.5 1.5 | 0.0 1,823.1 20.0 42.6 1.5 6.2 0.8 71.1 4.9 55.5 53.7 27.3 54.6 55.5 5.4 27.3 23.2 2.0 3.9 371.7 0.4 0.6 1.8 1.8 | 0.0 281.4 3.1 6.6 0.2 1.0 0.1.1 11.0 0.8 8.6 8.3 4.2 8.4 8.6 0.8 4.2 3.6 0.6 0.6 57.4 0.1 0.1 0.3 | 0.0 90,402.9 796.3 2,132.6 63.4 800.2 33.0 3,825.6 459.7 3,639.2 3,519.8 1,786.9 3,579.5 3,639.2 3,52.3 1,791.4 1,520.8 128.0 256.0 24,508.3 | 54.8 113.4 3.0 39.9 1.6 212.6 42.0 30.1.1 291.2 147.9 296.2 30.1.1 29.2 21.2 2,031.9 23.3 3.3 9.4 9.4 | 0.0 34,297.1 290.6 942.3 28.0 306.1 14.2 1,581.1 72.1 842.7 818.8 415.8 830.8 842.7 868.8 31.5 63.1 5,680.1 5.9 10.7 27.8 | 2,902.2 22.3 96.0 6.3 43.1 1.7 169.4 119.4 757.8 817.4 422.2 764.3 759.0 85.6 400.6 328.3 29.2 60.2 61.5 5,369.8 12.7 12.8 25.6 25.6 | 0.0 47,680.8 428.7 981.0 26.0 411.3 15.5 1,862.5 226.1 1,737.6 1,592.3 801.0 1,688.3 1,736.4 150.7 826.8 700.4 56.6 111.5 110.2 11,425.5 5.6 13.8 51.2 | 0.0 30,458.7 312.9 619.8 19.5 250.9 9.6 1,212.7 179.8 1,149.9 1,027.5 515.5 1,111.7 1,148.9 96.2 537.6 446.3 36.8 71.9 70.8 7,504.5 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 440.1 440.1 440.1 440.1 449.2 449.2 449.2 439.2 5,826.3 216.4 313.9 440.3 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.4 567.7 567.7 565.8 565.8 565.8 7,264.3 230.5 400.6 568.0 568.0 | 269.1 55,394.2 130.8 356.8 390.8 189.9 431.5 1,499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-1-3H MB (Infill #1) LACEY 13-10-2H (Infill #2) LACEY 13-10-2H (Infill #2) LACEY 14-3-2XH (Infill #2) LACEY 14-3-3XH (Infill #2) LACEY 43-2HMB (Infill #2) LACEY 43-2HMB (Infill #2) LACEY 14-3-3XH (Infill #2) LACEY 14-3-3XH (Infill #2) LACEY 14-3-3XH (Infill #2) LEHR LITTLEFIELD 41-2HU MB #1 MAKI 11-27-HU MAKI 11-27-HU MIEMITALO 31-15-3XH SUBTOTAL PUD-DUC ABBOTT - TFK INFILL #1 (E-W) ABBOTT 1-18MB (Infill #2) ABBOTT 11-18MB (Infill #2) ABBOTT 11-18MB (Infill #2) ABBOTT 11-18MB (Infill #2) | PDP-APO JCING PNP PNP PNP PNP PNP PNP PUD-DUC | BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 10 152N 92W 25 153N 92W 10-11 152N-92W 10-11 152N-92W 2-3 152N 92W 2-3 152N 92W 2-11 / 1-12 152N-92W 2-3 152N 92W 2-11 / 1-12 152N-92W 2-3 152N 92W 2-11 / 1-12 152N-91W 2-13 / 10-11 152N 91W 2-14 / 10-11 152N 91W 2-14 / 10-11 152N 91W 2-152N 92W 2-11 / 1-12 152N-91W 2-14 / 1-18 153N-91W 15-22/14-23 154N-91W 15-22/14-23 154N-91W 17-18 153N 91W 17-18 153N 91W 17-18 153N 91-92W |
0.000
0.067
0.292
0.020
0.128
0.005
0.131
0.128
0.065
0.129
0.131
0.013
0.065
0.055
0.005
0.000
0.001
0.0002
0.002
0.004
0.004 | 0.000
0.054
0.245
0.106
0.004
0.106
0.054
0.108
0.109
0.011
0.054
0.008
0.008
0.008 | 19.17
21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
27.17
26.42
26.42
26.42
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83 | 11/2021
111/2021
111/2021
111/2021
111/2021
111/2021
111/2021
11/2021
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022
01/2022 | 90.9 20,192.0 173.9 107.2 45.1 103.3 91.5 521.0 549.0 440.1 440.1 440.1 440.1 440.1 440.1 439.2 440.1 440.1 439.2 5,826.3 216.4 313.9 440.3 313.9 | 46,728.9 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 567.7 567.7 567.7 568.8 565.8 7,264.3 230.6 568.0 400.6 | 95.2 6,448.6 56.7 26.8 13.5 9.0 29.9 135.9 63.4 78.3 78.3 78.3 78.3 78.3 78.1 78.1 1,002.5 | 0.0 1,097.6 9.5 26.3 0.8 10.9 0.4 47.8 6.5 48.1 46.6 23.6 47.3 48.1 4.7 20.1 1.7 3.4 3.4 324.6 0.4 0.5 1.5 1.5 | 0.0 1,823.1 20.0 42.6 1.5 6.2 0.8 71.1 4.9 55.5 53.7 27.3 54.6 54.6 54.6 54.6 27.3 23.2 2.0 3.9 3.9 371.7 0.4 0.6 1.8 1.8 0.4 | 0.0 281.4 3.1 6.6 0.2 1.0 0.1 11.0 0.8 8.6 8.3 4.2 8.4 8.4 8.6 0.8 3.6 0.6 0.5 7.4 0.1 0.1 0.3 0.3 0.3 0.1 | 796.3 2,132.6 63.4 800.2 33.0 3,825.6 459.7 3,639.2 3,519.8 1,786.9 3,579.5 3,579.5 3,579.5 2,56.0 24,508.3 | 5,522.9 54.8 113.4 3.0 39.9 1.6 212.6 42.0 301.1 291.2 147.9 296.2 296.2 296.2 21.2 2.2 2.3 3.3 9.4 9.4 9.4 | 0.0 34,297.1 290.6 942.3 28.0 306.1 14.2 1,581.1 72.1 842.7 818.8 415.8 830.8 842.7 86.8 415.8 366.3 31.5 63.1 5,680.1 5,980.1 | 2,902.2 22.3 96.0 6.3 43.1 1.7 169.4 119.4 757.8 817.4 422.2 764.3 759.0 85.6 400.6 328.3 29.2 61.5 5,369.8 12.7 12.8 25.6 25.6 7.5 | 0.0 47,680.8 428.7 981.0 26.0 411.3 15.5 1,862.5 226.1 1,737.6 1,592.3 801.0 1,688.3 1,736.4 150.7 826.8 700.4 56.6 6111.5 110.2 11,426.5 5.6 6 13.8 51.2 51.2 51.2 | 0.0 30,458.7 312.9 619.8 1.9.5 250.9 9.6 1,212.7 179.8 1,149.9 1,027.5 1,111.7 1,111.7 1,111.9 96.2 537.6 446.3 36.8 7.0.9 7.08 7,504.5 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 440.1 440.1 440.1 440.1 440.1 439.2 439.2 5,826.3 216.4 313.9 440.3 313.9 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 667.7 567.7 567.7 567.7 567.7 567.7 565.8 565.8 7,264.3 230.5 400.6 568.0 568.0 | 269.1 55,394.2 130.8 356.8 390.8 189.9 431.5 1,499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-1-3H MB (Infill #1) LACEY 13-10-2H (Infill #2) LACEY 13-10HU MB #1 LACEY 13-24H (Infill #1) LACEY 14-3-3XH (Infill #2) LACEY 43-3XH (Infill #2) LACEY 43-27-HU MB #1 LACEY 43-27-HU MAKI 11-27-HU MAKI 11-27-HU MAKI 11-27-HU MAKI 11-27-HU MAKI 11-15-3XH SUBTOTAL PUD-DUC ABBOTT - TFK INFILL #1 (E-W) ABBOTT - MB INFILL #1 (E-W) ABBOTT 1-18MB (Infill #2) ABBOTT 11-18MB (Infill #2) ABBOTT 1-18MB W. MB #1 (N-S) | PDP-APO JCING PNP PNP PNP PNP PNP PUD-DUC PUD-PUD PUD PUD PUD PUD PUD PUD | BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 10 152N 92W 10-11 152N-92W 10-11 152N-92W 10-11 152N-92W 2-3 152N 92W 2-3 10-11 152N 92W 2-3 152N 92W 2-11 / 1-12 152N-92W 2-12 1/ 1-12 152N-92W 2-13 154N-91W 15-22/14-23 154N-91W 15-22/14-23 154N-91W 15-72/14-23 154N-91W 15-817-18 153N-91W 17-8 153N-91W 17-18 153N-91W 17-18 153N-91-92W 12-13 /7-18 153N-91-92W | 0.000
0.067
0.292
0.020
0.128
0.005
0.015
0.131
0.128
0.065
0.129
0.129
0.131
0.065
0.055
0.005
0.010
0.010
0.010
0.002
0.002
0.004
0.004
0.004 | 0.000
0.054
0.017
0.106
0.004
0.012
0.109
0.109
0.054
0.064
0.004
0.008
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0 | 21.75
21.05
16.58
22.67
22.92
17.58
26.92
26.92
26.92
26.92
26.92
27.17
26.42
26.42
26.42
27.17
26.42
27.17
27.83
27.83
27.83
27.83
27.83 | 01/2021 111/2021 111/2021 11/2021 11/2021 11/2021 11/2021 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 | 90.9 20,192.0 173.9 107.2 45.1 103.3 91.5 521.0 549.0 440.1 440.1 440.1 440.1 440.1 449.2 440.1 440.1 439.2 439.2 5,826.3 216.4 313.9 440.3 313.9 216.4 | 690.0 46,728.9 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.4 567.7 567.7 565.8 565.8 565.8 7,264.3 230.5 400.6 568.0 400.6 230.5 | 95.2 6,448.6 56.7 26.8 13.5 9.0 29.9 135.9 63.4 78.3 78.3 78.3 78.3 78.3 78.1 78.1 1,002.5 | 0.0 1,097.6 9.5 26.3 0.8 10.9 0.4 47.8 6.5 48.1 46.6 23.6 47.3 48.1 4.7 23.7 20.1 1.7 3.4 324.6 0.4 0.5 1.5 0.5 0.4 0.2 | 0.0 1,823.1 20.0 42.6 1.5 6.2 0.8 71.1 4.9 55.5 53.7 27.3 54.6 55.5 5.4 27.3 23.2 2.0 3.9 3.71.7 0.4 0.6 1.8 1.8 0.4 0.2 | 0.0 281.4 3.1 6.6 0.2 1.0 0.1 11.0 0.8 8.6 8.3 4.2 8.4 8.4 8.6 0.8 4.2 3.6 6 57.4 0.1 0.1 0.3 0.3 0.1 0.0 | 0.0 90,402.9 796.3 2,132.6 63.4 800.2 33.0 3,825.6 459.7 3,639.2 3,519.8 1,786.9 3,579.5 3,639.2 352.3 1,791.4 1,520.8 128.0 256.0 24,508.3 | 54.8 113.4 3.0 39.9 1.6 212.6 42.0 301.1 291.2 147.9 296.2 301.1 29.2 148.2 125.7 10.6 21.2 2,031.9 23 3.3 9.4 9.4 2.2 1.5 | 0.0 34,297.1 290.6 942.3 28.0 306.1 14.2 1,581.1 72.1 842.7 818.8 415.8 830.8 842.7 868.8 31.5 63.1 5,680.1 5.9 10.7 27.8 27.8 27.8 4.0 | 2,902.2 22.3 96.0 6.3 43.1 1.7 169.4 119.4 757.8 817.4 422.2 764.3 759.0 85.6 400.6 328.3 29.2 60.2 61.5 5,369.8 12.7 12.8 25.6 25.6 7.5 | 0.0 47,680.8 428.7 981.0 26.0 411.3 15.5 1,862.5 226.1 1,737.6 1,592.3 801.0 1,688.3 1,736.4 150.7 826.8 704.4 56.6 111.5 110.2 11,426.5 | 0.0 30,458.7 312.9 619.8 19.5 250.9 1,212.7 179.8 1,149.9 1,027.5 515.5 1,111.7 1,148.9 96.2 33.6 446.3 36.8 71.9 70.8 8.3 30.2 30.2 6.1 3.2 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 440.1 440.1 440.1 449.2 440.1 449.2 439.2 5,826.3 216.4 313.9 440.3 313.9 216.4 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 67.7 567.7 567.7 567.7 567.7 565.8 567.7 565.8 230.5 400.6 568.0 400.6 568.0 400.6 230.5 | 269.1 55,394.2 130.8 356.8 390.8 189.9 431.5 1,499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-1-3H MB (infill #1) LACEY 13-10-2H (infill #2) LACEY 13-10-10 (infill #2) LACEY 13-10-10 (infill #2) LACEY 13-10HU MB #1 LACEY 14-3-3XH (infill #2) LACEY 14-3-3XH (infill #2) LACEY 14-3-2XH (infill #2) LACEY 14-3-3XH #1) ABBOTT - TK INFILL #1 (E-W) ABBOTT 1-18MB (infill #1) ABBOTT 1-18MB (infill #2) ABBOTT W. MB #1 (In-S) ABBOTT W. MB #1 (IN-S) ABNISHEE WEST MB #1 | PDP-APO ICING PNP PNP PNP PNP PNP PNP PND-DUC PUD-DUC | BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 14 154N 92W 25 153N 92W 26 153N 92W 27 153N 92W 28 152N 92W 29 10-11 152N 92W 29 10-11 152N 92W 29 10-11 152N 92W 29 152N 92W 29 10-11 152N 92W 29 152N 92W 29 11 11 152N 92W 29 152N 92W 29 11 11 152N 92W 29 152N 92W 20 11 11 152N 92W 20 11 11 152N
92W 20 11 11 152N 91W 20 11 11 152N 91W 20 11 11 11 11 11 11 11 11 11 11 11 11 11 | 0.000
0.067
0.292
0.020
0.128
0.005
0.015
0.131
0.128
0.065
0.129
0.131
0.013
0.005
0.005
0.001
0.001
0.002
0.004
0.004
0.001
0.001 | 0.054
0.245
0.000
0.001
0.002
0.003
0.003
0.008
0.008
0.008
0.008
0.008
0.008
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 | 21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.92
26.92
26.92
26.92
26.92
26.92
27.17
26.42
26.42
26.42
21.42
23.08
27.83
27.83
27.83
27.83
27.83
27.83
27.83 | 11/2021 11/2021 11/2021 11/2021 11/2021 11/2021 11/2021 11/2021 11/2021 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 | 90.9 20,192.0 173.9 107.2 45.1 103.3 91.5 521.0 549.0 440.1 440.1 440.1 440.1 449.2 439.2 439.2 5,826.3 216.4 313.9 440.3 313.9 216.4 440.1 | 46,728.9 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.4 567.7 565.8 565.8 7,264.3 230.5 400.6 568.0 400.6 230.5 567.7 | 95.2 6,448.6 56.7 26.8 13.5 9.0 29.9 135.9 63.4 78.3 78.3 78.3 78.3 78.3 78.1 1,002.5 31.8 55.3 78.4 55.3 31.8 | 0.0 1,097.6 9.5 26.3 0.8 10.9 0.4 47.8 6.5 48.1 46.6 23.6 47.3 48.1 4.7 20.1 1.7 3.4 324.6 0.4 0.5 1.5 1.5 0.4 0.2 | 0.0 1,823.1 20.0 42.6 1.5 6.2 0.8 71.1 4.9 55.5 53.7 27.3 54.6 55.5 5.4 47.3 23.2 2.0 3.9 3.9 371.7 0.4 0.6 1.8 1.8 0.4 0.2 1.3 | 0.0 281.4 3.1 6.6 0.2 1.0 0.1 11.0 0.8 8.6 8.3 4.2 8.4 8.6 0.6 0.6 57.4 0.1 0.3 0.3 0.3 0.1 0.0 0.2 | 0.0 90,402.9 796.3 2,132.6 63.4 800.2 33.0 3,825.6 459.7 3,639.2 3,519.8 1,786.9 3,579.5 3,639.2 352.3 352.3 352.3 352.3 26.5 40.5 114.0 26.8 17.5 86.7 | 5,522.9 54.8 113.4 3.0 39.9 1.6 212.6 42.0 301.1 291.2 147.9 296.2 296.2 301.1 29.2 148.2 125.7 10.6 21.2 2,031.9 2,3 3.3 9.4 9.4 2.2 1.5 7.2 | 0.0 34,297.1 290.6 942.3 28.0 306.1 14.2 1,581.1 72.1 842.7 818.8 415.8 830.8 842.7 86.8 8415.8 366.3 31.5 63.1 5,680.1 5,99 10.7 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27 | 2,902.2 22.3 96.0 6.3 43.1 1.7 169.4 119.4 757.8 817.4 422.2 764.3 759.0 85.6 400.6 328.3 29.2 60.2 61.5 5,369.8 12.7 12.8 25.6 7.5 7.4 | 0.0 47,680.8 428.7 981.0 26.0 411.3 15.5 1,862.5 226.1 1,737.6 1,592.3 801.0 1,688.3 1,736.4 150.7 826.8 700.4 56.6 111.5 110.2 11,426.5 5.6 13.8 51.2 10.0 4.6 38.9 | 0.0 30,458.7 312.9 619.8 19.5 250.9 9.6 1,212.7 179.8 1,149.9 1,027.5 515.5 1,111.7 1,148.9 96.2 537.6 446.3 36.8 8.3 36.8 8.3 30.2 30.2 6.1 3.2 23.2 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 440.1 440.1 440.1 440.1 449.2 439.2 439.2 5,826.3 216.4 313.9 440.3 313.9 216.4 440.1 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 567.7 567.7 565.8 565.8 7,264.3 230.5 568.0 400.6 230.5 567.7 | 269.1 55,394.2 130.8 356.8 390.8 189.9 431.5 1,499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU VERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-13H MB (Infill #1) LACEY 13-10-2H (Infill #2) LACEY 13-10HU MB #1 LACEY 14-3-3XH (Infill #2) ABBOTT -TFK INFILL #1 (E-W) ABBOTT -TFK INFILL #1 (E-W) ABBOTT 1-18MB (Infill #2) ABBOTT 1-18MB (Infill #1) ABBOTT 1-18MB (Infill #2) ABBOTT 1-18MB (Infill #2) ABBOTT W. TFK #1 (N-S) BANSHEE WEST MB #1 BRAAFLAT 11-12 (W) MB #1 | PDP-APO CING PNP PNP PNP PNP PNP PNP PNP PNP PND-DUC PUD-DUC PUD-PUD PUD PUD PUD PUD PUD PUD PUD | BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 33 154N 91W 10 152N 92W 25 153N 92W 10-11 152N-92W 10-11 152N-92W 2-3 / 10-11 152N 92W 2-3 152N 92W 2-11 / 1-12 152N-92W 2-11 / 1-12 152N-91W 15-22/14-23 154N-91W 15-22/14-23 154N-91W 15-22/14-23 154N-91W 17-18 153N-91W 17-18 153N 91W 91P | 0.000
0.067
0.292
0.020
0.128
0.005
0.015
0.131
0.128
0.065
0.129
0.131
0.005
0.010
0.005
0.000
0.001
0.002
0.002
0.004
0.004
0.004
0.001
0.001
0.001
0.001
0.002 | 0.000
0.054
0.017
0.106
0.004
0.012
0.109
0.106
0.054
0.004
0.004
0.008
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0. | 21.75
21.00
16.58
22.67
22.92
17.58
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
26.92
27.17
26.42
26.42
26.42
27.17
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83 | 01/2021 11/2021 11/2021 11/2021 11/2021 11/2021 11/2021 11/2021 11/2021 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022
01/2022 01/2022 01/2022 11/2022 11/2022 11/2022 11/2022 11/2022 11/2022 11/2022 11/2022 11/2022 11/2022 | 90.9 20,192.0 173.9 107.2 45.1 103.3 91.5 521.0 549.0 440.1 440.1 440.1 440.1 439.2 440.1 440.1 439.2 439.2 5,826.3 216.4 313.9 216.4 440.3 313.9 216.4 440.1 | 690.0 46,728.9 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 567.7 567.7 565.8 565.8 565.8 7,264.3 230.5 400.6 230.5 567.7 400.6 | 95.2 6,448.6 56.7 26.8 13.5 9.0 29.9 135.9 63.4 78.3 78.3 78.3 78.3 78.3 78.1 78.1 1,002.5 31.8 55.3 31.8 75.4 75.4 75.4 75.5 | 0.0 1,097.6 9.5 26.3 0.8 10.9 0.4 47.8 6.5 48.1 46.6 23.6 47.3 47.3 48.1 1.7 20.1 1.7 3.4 324.6 0.4 0.5 1.5 1.5 0.4 0.2 1.2 0.3 | 0.0 1,823.1 20.0 42.6 1.5 6.2 0.8 71.1 4.9 55.5 53.7 27.3 54.6 54.6 55.5 5.4 27.3 23.2 2.0 3.9 3.71.7 0.4 0.6 1.8 1.8 0.4 0.2 1.3 0.3 | 0.0 281.4 3.1 6.6 0.2 1.0 0.1 11.0 0.8 8.6 8.3 4.2 8.4 8.4 8.6 0.8 4.2 3.6 6 57.4 0.1 0.1 0.3 0.3 0.1 0.0 0.2 0.0 | 0.0 90,402.9 796.3 2,132.6 63.4 800.2 33.0 3,825.6 459.7 3,639.2 3,519.8 1,786.9 3,579.5 3,639.2 352.3 1,791.4 1,520.8 128.0 256.0 24,508.3 26.5 40.5 114.0 114.0 26.8 17.5 86.7 18.8 | 54.8 113.4 3.0 39.9 1.6 212.6 42.0 301.1 291.2 147.9 296.2 296.2 301.1 29.2 2,031.9 23 3.3 3.4 9.4 9.4 2.2 1.5 7.2 1.5 | 0.0 34,297.1 290.6 942.3 28.0 306.1 14.2 1,581.1 72.1 842.7 818.8 415.8 830.8 830.8 842.7 86.8 415.8 31.5 63.1 5,680.1 5.9 10.7 27.8 27.8 27.8 4.0 21.1 5.0 | 2,902.2 22.3 96.0 6.3 43.1 1.7 169.4 119.4 757.8 817.4 422.2 764.3 759.0 85.6 400.6 328.3 29.2 60.5 5,369.8 12.7 12.8 25.6 25.6 7.5 7.4 19.5 | 0.0 47,680.8 428.7 981.0 26.0 411.3 15.5 1,862.5 226.1 1,737.6 1,592.3 801.0 1,688.3 1,736.4 150.7 826.8 700.4 56.6 111.5 110.2 11,426.5 5.6 131.8 5.1.2 5.1 0.0 4.6 38.9 7.0 | 0.0 30,458.7 312.9 619.8 19.5 250.9 9.6 1,212.7 179.8 1,149.9 1,027.5 515.5 1,111.7 1,118.9 96.2 537.6 446.3 36.8 71.9 7,504.5 3.8 8.3 3.0.2 6.1 6.1 6.1 6.2 2.2 2.2 2.3.2 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 440.1 440.1 440.1 439.2 439.2 5,826.3 216.4 313.9 216.4 440.3 313.9 216.4 440.1 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 567.7 565.8 565.8 7,264.3 230.5 400.6 230.5 567.7 400.6 | 269.1 55,394.2 130.8 350.8 389.9 431.5 1,499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | URAN FEDERAL 22-24H SUBTOTAL PROVED DEVELOPED PRODU PROVED NON-PRODUCING FLADELAND 12-10HU IVERSON 11-14H KANNIANEN 43-33H LACEY 13-10H PEERY STATE 11-25H SUBTOTAL PROVED NON-PRODUCING PROVED UNDEVELOPED BIGFOOT LACEY 12-1-3H MB (infill #1) LACEY 13-10-2H (infill #2) LACEY 13-10-10 (infill #2) LACEY 13-10-10 (infill #2) LACEY 13-10HU MB #1 LACEY 14-3-3XH (infill #2) LACEY 14-3-3XH (infill #2) LACEY 14-3-2XH (infill #2) LACEY 14-3-3XH #1) ABBOTT - TK INFILL #1 (E-W) ABBOTT 1-18MB (infill #1) ABBOTT 1-18MB (infill #2) ABBOTT W. MB #1 (In-S) ABBOTT W. MB #1 (IN-S) ABNISHEE WEST MB #1 | PDP-APO ICING PNP PNP PNP PNP PNP PNP PND-DUC PUD-DUC | BAKKEN | 24 153N 92W 3-4/(N/2) 9-10 154N-92W 14 154N 92W 14 154N 92W 25 153N 92W 26 153N 92W 27 153N 92W 28 152N 92W 29 10-11 152N 92W 29 10-11 152N 92W 29 10-11 152N 92W 29 152N 92W 29 10-11 152N 92W 29 152N 92W 29 11 11 152N 92W 29 152N 92W 29 11 11 152N 92W 29 152N 92W 20 11 11 152N 92W 20 11 11 152N 92W 20 11 11 152N 91W 20 11 11 152N 91W 20 11 11 11 11 11 11 11 11 11 11 11 11 11 | 0.000
0.067
0.292
0.020
0.128
0.005
0.015
0.131
0.128
0.065
0.129
0.131
0.013
0.005
0.005
0.001
0.001
0.002
0.004
0.004
0.001
0.001 | 0.054
0.245
0.000
0.001
0.002
0.003
0.003
0.008
0.008
0.008
0.008
0.008
0.008
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 | 21.75
21.05
21.05
16.58
22.67
22.92
26.92
26.92
26.92
26.92
26.92
26.42
26.42
26.42
26.42
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83
27.83 | 11/2021 11/2021 11/2021 11/2021 11/2021 11/2021 11/2021 11/2021 11/2021 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 | 90.9 20,192.0 173.9 107.2 45.1 103.3 91.5 521.0 549.0 440.1 440.1 440.1 440.1 449.2 439.2 439.2 5,826.3 216.4 313.9 440.3 313.9 216.4 440.1 | 46,728.9 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.4 567.7 565.8 565.8 7,264.3 230.5 400.6 568.0 400.6 230.5 567.7 | 95.2 6,448.6 56.7 26.8 13.5 9.0 29.9 135.9 63.4 78.3 78.3 78.3 78.3 78.3 78.1 1,002.5 31.8 55.3 78.4 55.3 31.8 | 0.0 1,097.6 9.5 26.3 0.8 10.9 0.4 47.8 6.5 48.1 46.6 23.6 47.3 48.1 4.7 20.1 1.7 3.4 324.6 0.4 0.5 1.5 1.5 0.4 0.2 | 0.0 1,823.1 20.0 42.6 1.5 6.2 0.8 71.1 4.9 55.5 53.7 27.3 54.6 55.5 5.4 47.3 23.2 2.0 3.9 3.9 371.7 0.4 0.6 1.8 1.8 0.4 0.2 1.3 | 0.0 281.4 3.1 6.6 0.2 1.0 0.1 11.0 0.8 8.6 8.3 4.2 8.4 8.6 0.6 0.6 57.4 0.1 0.3 0.3 0.3 0.1 0.0 0.2 | 0.0 90,402.9 796.3 2,132.6 63.4 800.2 33.0 3,825.6 459.7 3,639.2 3,519.8 1,786.9 3,579.5 3,639.2 352.3 352.3 352.3 352.3 26.5 40.5 114.0 26.8 17.5 86.7 | 5,522.9 54.8 113.4 3.0 39.9 1.6 212.6 42.0 301.1 291.2 147.9 296.2 296.2 301.1 29.2 148.2 125.7 10.6 21.2 2,031.9 2,3 3.3 9.4 9.4 2.2 1.5 7.2 | 0.0 34,297.1 290.6 942.3 28.0 306.1 14.2 1,581.1 72.1 842.7 818.8 415.8 830.8 842.7 86.8 8415.8 366.3 31.5 63.1 5,680.1 5,99 10.7 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27 | 2,902.2 22.3 96.0 6.3 43.1 1.7 169.4 119.4 757.8 817.4 422.2 764.3 759.0 85.6 400.6 328.3 29.2 60.2 61.5 5,369.8 12.7 12.8 25.6 7.5 7.4 | 0.0 47,680.8 428.7 981.0 26.0 411.3 15.5 1,862.5 226.1 1,737.6 1,592.3 801.0 1,688.3 1,736.4 150.7 826.8 700.4 56.6 111.5 110.2 11,426.5 5.6 13.8 51.2 10.0 4.6 38.9 | 0.0 30,458.7 312.9 619.8 19.5 250.9 9.6 1,212.7 179.8 1,149.9 1,027.5 515.5 1,111.7 1,148.9 96.2 537.6 446.3 36.8 8.3 36.8 8.3 30.2 30.2 6.1 3.2 23.2 | 359.9 75,586.2 304.7 464.0 435.9 293.3 523.0 2,020.9 549.0 440.1 440.1 440.1 440.1 440.1 449.2 439.2 439.2 5,826.3 216.4 313.9 440.3 313.9 216.4 440.1 | 735.8 50,432.1 411.2 194.3 97.7 65.4 216.5 985.0 459.5 567.7 567.7 567.7 567.7 567.7 565.8 565.8 7,264.3 230.5 568.0 400.6 230.5 568.0 | 269.1 55,394.2 130.8 356.8 390.8 189.9 431.5 1,499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 45.8 3,703.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | | | | | | | | | | | | | | | | | Operating | Investment | | Discounted | | | | | |-------------------------------|---------|-------------|---------------------------------|-------|-------|---------|---------|-----------|-----------|-----------|---------|---------|---------|-------------|----------|-----------|------------|-------------|------------|------------|------------|----------|---------| | | | | | | | Life | Start | Gross Oil | Gross Gas | Gross NGL | Net Oil | Net Gas | Net NGL | Net Revenue | Taxes | Expense | and P&A | Undisc. NCF | NCF @ 10% | Ultimate | Ultimate | Cum Oil | Cum Gas | | Well | Res Cat | Reservoir | Location | WI | NRI | (Years) | Date | (Mbbl) | (MMCF) | (Mbbl) | (Mbbl) | (MMCF) | (Mbbl) | (M\$) | (M\$) | (M\$) | Cost (M\$) | (M\$) | (M\$) | Oil (Mbbl) | Gas (MMCF) | (Mbbl) | (MMCF) | | HANSEN 14-20XMB ((Infill #1) | PUD | BAKKEN | 20-21/28-29 153N 91W | 0.005
| 0.004 | 27.83 | 12/2022 | 440.1 | 567.7 | 78.3 | 1.8 | 2.1 | 0.3 | 136.1 | 11.2 | 33.3 | 30.7 | 60.9 | 35.5 | 440.1 | 567.7 | 0.0 | 0.0 | | HANSEN 21-20MB ((Infill #1) | PUD | BAKKEN | 20-21 153N 91W | 0.005 | 0.004 | 27.83 | 11/2022 | 440.3 | 568.0 | 78.4 | 1.9 | 2.2 | 0.3 | 142.1 | 11.7 | 34.6 | 31.9 | 63.8 | 37.6 | 440.3 | 568.0 | 0.0 | 0.0 | | KANNIANEN MB #1 | PUD | BAKKEN | 4-5/32-33 153-154N-91W | 0.010 | 0.009 | 27.25 | 01/2022 | 440.7 | 569.0 | 78.5 | 3.8 | 4.4 | 0.7 | 288.1 | 23.8 | 65.9 | 58.9 | 139.5 | 92.5 | 440.7 | 569.0 | 0.0 | 0.0 | | KANNIANEN TFK #1 | PUD | THREE FORKS | 4-5/32-33 153-154N-91W | 0.010 | 0.009 | 11.50 | 12/2021 | 216.7 | 231.1 | 31.9 | 1.9 | 1.8 | 0.3 | 133.9 | 11.7 | 29.3 | 60.0 | 32.9 | 23.8 | 216.7 | 231.1 | 0.0 | 0.0 | | KINNOIN - E. MB #1 | PUD | BAKKEN | 13-24/14-23 154N-91W | 0.010 | 0.008 | 27.42 | 01/2023 | 439.2 | 565.8 | 78.1 | 3.4 | 3.9 | 0.6 | 253.0 | 20.9 | 63.9 | 59.7 | 108.4 | 62.2 | 439.2 | 565.8 | 0.0 | 0.0 | | LACEY 12-10-2H MB (Infill #1) | PUD | BAKKEN | 10-11 152N 92W | 0.128 | 0.106 | 28.92 | 01/2024 | 440.1 | 567.7 | 78.3 | 46.6 | 53.7 | 8.3 | 3,486.8 | 286.6 | 869.3 | 791.1 | 1,539.8 | 796.3 | 440.1 | 567.7 | 0.0 | 0.0 | | LACEY 13-10TFHU TFK #1 | PUD | THREE FORKS | 10-11 / 14-15 152N-92W | 0.065 | 0.054 | 13.42 | 01/2024 | 216.4 | 230.5 | 31.8 | 11.6 | 11.1 | 1.7 | 796.9 | 69.4 | 189.1 | 398.1 | 140.3 | 69.3 | 216.4 | 230.5 | 0.0 | 0.0 | | LEO 12-29MB (Infill #1) | PUD | BAKKEN | 28-29 153N 91W | 0.005 | 0.004 | 27.83 | 12/2022 | 440.1 | 567.7 | 78.3 | 1.7 | 2.0 | 0.3 | 130.4 | 10.8 | 31.9 | 29.5 | 58.2 | 34.0 | 440.1 | 567.7 | 0.0 | 0.0 | | LIITLEFIELD FED 13-34HU | PUD | BAKKEN | 2-3/34-35 153-154N-91W | 0.070 | 0.057 | 26.75 | 12/2021 | 439.9 | 567.4 | 78.3 | 25.2 | 29.1 | 4.5 | 1,918.6 | 158.9 | 458.9 | 430.1 | 870.7 | 572.3 | 439.9 | 567.4 | 0.0 | 0.0 | | LITTLEFIELD - N XU. MB #1 | PUD | BAKKEN | 20-21/28-29 153N-91W | 0.005 | 0.004 | 26.92 | 01/2022 | 440.1 | 567.7 | 78.3 | 1.8 | 2.1 | 0.3 | 137.3 | 11.4 | 32.9 | 30.7 | 62.4 | 40.5 | 440.1 | 567.7 | 0.0 | 0.0 | | LITTLEFIELD - N XU. TFK #1 | PUD | THREE FORKS | 20-21/28-29 153N-91W | 0.005 | 0.004 | 26.33 | 03/2022 | 344.5 | 460.1 | 63.5 | 1.4 | 1.7 | 0.3 | 108.6 | 8.6 | 30.0 | 30.7 | 39.4 | 21.6 | 344.5 | 460.1 | 0.0 | 0.0 | | LITTLEFIELD - S XU. MB #1 | PUD | BAKKEN | 28-29 / 32-33 153N-91W | 0.002 | 0.002 | 27.92 | 01/2023 | 440.1 | 567.7 | 78.3 | 0.9 | 1.0 | 0.2 | 65.0 | 5.4 | 16.0 | 14.7 | 28.9 | 16.7 | 440.1 | 567.7 | 0.0 | 0.0 | | LITTLEFIELD - S XU. TFK #1 | PUD | THREE FORKS | 28-29 / 32-33 153N-91W | 0.002 | 0.002 | 27.08 | 01/2023 | 344.3 | 459.8 | 63.5 | 0.7 | 0.8 | 0.1 | 51.6 | 4.1 | 14.5 | 14.7 | 18.2 | 8.9 | 344.3 | 459.8 | 0.0 | 0.0 | | LITTLEFIELD 41-2TFHU TFK #1 | PUD | THREE FORKS | 2-11 / 1-12 152N-92W | 0.065 | 0.054 | 27.08 | 01/2023 | 344.3 | 459.8 | 63.5 | 18.5 | 22.1 | 3.4 | 1,404.0 | 110.9 | 394.9 | 400.6 | 497.6 | 243.5 | 344.3 | 459.8 | 0.0 | 0.0 | | LITTLEFIELD FED 13-34MB | PUD | BAKKEN | 34-35 154N 91W | 0.134 | 0.111 | 27.83 | 01/2023 | 439.9 | 567.4 | 78.3 | 48.7 | 56.1 | 8.7 | 3,639.1 | 300.0 | 898.9 | 830.6 | 1,609.6 | 926.9 | 439.9 | 567.4 | 0.0 | 0.0 | | LOCKEN - N XU. MB #1 | PUD | BAKKEN | 15-16 / 21-22 153N - 91W | 0.003 | 0.002 | 27.58 | 06/2022 | 440.6 | 568.7 | 78.5 | 1.0 | 1.1 | 0.2 | 72.7 | 6.0 | 17.4 | 16.0 | 33.3 | 20.7 | 440.6 | 568.7 | 0.0 | 0.0 | | LOCKEN 11-22 MB #1 | PUD | BAKKEN | 21-28 / 22-27 153N-91W | 0.004 | 0.003 | 27.67 | 09/2022 | 440.3 | 568.0 | 78.4 | 1.5 | 1.7 | 0.3 | 111.3 | 9.2 | 26.8 | 24.8 | 50.5 | 30.4 | 440.3 | 568.0 | 0.0 | 0.0 | | MUREX PAD MB #1 | PUD | BAKKEN | 26-35/25-36 154N-91W | 0.034 | 0.028 | 26.83 | 01/2022 | 439.9 | 567.4 | 78.3 | 12.2 | 14.0 | 2.2 | 920.3 | 76.2 | 221.7 | 207.5 | 415.0 | 269.0 | 439.9 | 567.4 | 0.0 | 0.0 | | NESHEIM 1-24 MB #1 | PUD | BAKKEN | 14-23 / W13-W24 153N-91W | 0.003 | 0.003 | 24.00 | 10/2022 | 314.2 | 401.2 | 55.4 | 0.9 | 1.0 | 0.2 | 65.3 | 5.3 | 17.4 | 18.1 | 24.5 | 14.4 | 314.2 | 401.2 | 0.0 | 0.0 | | PEERY S - XU. MB #1 | PUD | BAKKEN | 30-31 / 25-36 153N-91-92W | 0.003 | 0.002 | 28.92 | 01/2024 | 440.1 | 567.7 | 78.3 | 0.9 | 1.1 | 0.2 | 69.0 | 5.7 | 17.2 | 15.7 | 30.5 | 15.8 | 440.1 | 567.7 | 0.0 | 0.0 | | PEERY S - XU. TFK #1 | PUD | THREE FORKS | 30-31 / 25-36 153N-91-92W | 0.003 | 0.002 | 28.08 | 01/2024 | 344.3 | 459.8 | 63.5 | 0.7 | 0.9 | 0.1 | 54.8 | 4.3 | 15.6 | 15.7 | 19.2 | 8.4 | 344.3 | 459.8 | 0.0 | 0.0 | | PEERY STATE 25 MB #1 | PUD | BAKKEN | 19-30 / 20-29 153N-91W | 0.025 | 0.020 | 27.67 | 01/2023 | 439.6 | 566.8 | 78.2 | 8.9 | 10.2 | 1.6 | 663.4 | 54.7 | 165.6 | 153.7 | 289.3 | 166.3 | 439.6 | 566.8 | 0.0 | 0.0 | | PEERY STATE 25 TFK #1 | PUD | THREE FORKS | 19-30 / 20-29 153N-91W | 0.025 | 0.020 | 26.83 | 01/2023 | 343.9 | 458.8 | 63.3 | 6.9 | 8.3 | 1.3 | 525.7 | 41.6 | 150.3 | 153.6 | 180.2 | 87.2 | 343.9 | 458.8 | 0.0 | 0.0 | | PENNINGTON - N. MB #1 | PUD | BAKKEN | 2-3 / 36-31-32 152/53N - 91-92W | 0.069 | 0.057 | 28.00 | 01/2023 | 440.3 | 568.0 | 78.4 | 25.2 | 29.1 | 4.5 | 1,884.8 | 155.3 | 462.6 | 425.5 | 841.4 | 485.1 | 440.3 | 568.0 | 0.0 | 0.0 | | PENNINGTON - N. TFK #1 | PUD | THREE FORKS | 2-3 / 36-31-32 152/53N - 91-92W | 0.069 | 0.057 | 27.17 | 01/2023 | 344.5 | 460.1 | 63.5 | 19.7 | 23.6 | 3.6 | 1,494.5 | 118.0 | 420.1 | 425.2 | 531.2 | 260.3 | 344.5 | 460.1 | 0.0 | 0.0 | | PENNINGTON 11-3HU MB #1 | PUD | BAKKEN | 3-10 / 4-9 152-92W | 0.065 | 0.054 | 27.92 | 01/2023 | 440.1 | 567.7 | 78.3 | 23.7 | 27.3 | 4.2 | 1,769.4 | 145.8 | 434.5 | 400.6 | 788.4 | 454.5 | 440.1 | 567.7 | 0.0 | 0.0 | | PENNINGTON 11-3TFHU TFK #1 | PUD | THREE FORKS | 3-10 / 4-9 152N-92W | 0.065 | 0.054 | 27.08 | 01/2023 | 344.3 | 459.8 | 63.5 | 18.5 | 22.1 | 3.4 | 1,402.7 | 110.8 | 394.5 | 400.2 | 497.2 | 243.3 | 344.3 | 459.8 | 0.0 | 0.0 | | PETERSON MB #1 | PUD | BAKKEN | 23-24/25-26 153N-92W | 0.001 | 0.001 | 23.92 | 01/2023 | 313.6 | 400.0 | 55.2 | 0.2 | 0.2 | 0.0 | 16.2 | 1.3 | 4.4 | 4.6 | 5.9 | 3.3 | 313.6 | 400.0 | 0.0 | 0.0 | | PETERSON TFK #1 | PUD | THREE FORKS | 23-24/25-26 153N-92W | 0.001 | 0.001 | 12.33 | 01/2023 | 216.2 | 230.2 | 31.8 | 0.2 | 0.1 | 0.0 | 10.4 | 0.9 | 2.4 | 4.6 | 2.5 | 1.6 | 216.2 | 230.2 | 0.0 | 0.0 | | PLATT | PUD | THREE FORKS | | 0.066 | 0.055 | 11.42 | 01/2022 | 216.4 | 230.5 | 31.8 | 11.9 | 11.3 | 1.8 | 845.4 | 74.0 | 175.4 | 390.5 | 205.4 | 145.1 | 216.4 | 230.5 | 0.0 | 0.0 | | PLATT MB #1 | PUD | BAKKEN | 29-30/33-32 154N-91W | 0.066 | 0.055 | 26.92 | 01/2022 | 440.1 | 567.7 | 78.3 | 24.2 | 27.9 | 4.3 | 1,830.7 | 151.5 | 437.3 | 387.2 | 854.7 | 561.6 | 440.1 | 567.7 | 0.0 | 0.0 | | URAN - S XU. MB #1 | PUD | BAKKEN | 19-30 / 24-25 153N-91-92W | 0.045 | 0.036 | 28.58 | 01/2024 | 439.5 | 566.5 | 78.2 | 16.0 | 18.4 | 2.8 | 1,194.8 | 98.3 | 302.3 | 282.4 | 511.9 | 263.1 | 439.5 | 566.5 | 0.0 | 0.0 | | URAN - S XU. TFK #1 | PUD | THREE FORKS | 19-30 / 24-25 153N-91-92W | 0.045 | 0.036 | 27.83 | 01/2024 | 343.9 | 458.8 | 63.3 | 12.5 | 14.9 | 2.3 | 948.9 | 74.7 | 274.9 | 277.3 | 321.9 | 138.6 | 343.9 | 458.8 | 0.0 | 0.0 | | URAN MB #1 (E-W) | PUD | BAKKEN | 13-24 /17to20 153N-91-92W | 0.030 | 0.025 | 20.33 | 01/2024 | 550.1 | 609.6 | 84.1 | 13.6 | 13.5 | 2.1 | 947.5 | 85.0 | 174.2 | 245.4 | 443.0 | 277.3 | 550.1 | 609.6 | 0.0 | 0.0 | | URAN MB #1 (N-S) | PUD | BAKKEN | 23-24/25-26 153N-92W | 0.028 | 0.023 | | 01/2024 | 313.3 | 399.4 | 55.1 | 7.2 | 8.2 | 1.3 | 528.9 | 42.6 | 148.1 | 153.6 | 184.5 | 92.7 | 313.3 | 399.4 | 0.0 | 0.0 | | URAN TFK #1 (E-W) | PUD | THREE FORKS | 13-24 /17to20 153N-91-92W | 0.030 | 0.025 | 30.58 | 01/2024 | 436.3 | 586.2 | 80.9 | 10.8 | 12.9 | 2.0 | 825.7 | 66.3 | 221.9 | 246.9 | 290.6 | 116.3 | 436.3 | 586.2 | 0.0 | 0.0 | | URAN TFK #2 (N-S) | PUD | THREE FORKS | 23-24/25-26 153N-92W | 0.028 | 0.023 | 13.17 | 01/2024 | 215.9 | 229.5 | 31.7 | 4.9 | 4.7 | 0.7 | 337.7 | 29.5 | 81.1 | 152.1 | 75.0 | 42.3 | 215.9 | 229.5 | 0.0 | 0.0 | | SUBTOTAL PUD-UNDRILLED | | | | | | | | 17,699.7 | 22,512.7 | 3,106.8 | 414.7 | 473.4 | 73.1 | 30,965.7 | 2,547.4 | 7,751.0 | 8,020.6 | 12,646.7 | 7,173.4 | 17,699.7 | 22,512.7 | 0.0 | 0.0 | | GRAND TOTAL PROVED | | | | | | | | 44,239.0 | 77,490.9 | 10,693.7 | 1,884.8 | 2,739.3 | 422.8 | 149,702.6 | 10,314.8 | 49,309.4 | 16,461.9 | 73,616.5 | 46,349.2 | 101,133.1 | 81,194.2 | 56,894.1 | 3,703.3 | Zephyr Energy LLC Proved Reserves Audit Mountrail County, ND Sproule September 30, 2021 Escalated Pricing Total PDP #### DATE : 11/19/2021 TIME : 14:48:12 DBS : BANKUS SETTINGS : SET1021 SCENARIO : SPR_1021ESC EFF DATE: 10/2021 PW DATE: 10/2021 | | GROSS OIL PRODUCTIONMBBLS | PRODUC [*] | TION PR | | | PRODUC [*] | TION | | N REVENUE | REVENUE | NET NGL
REVENUE
M\$ | TOTAL NET
REVENUE | |--|--|---|---|---|--|---|---|---|--|--|---|--| | 12-2021 | 779.616 | 1730 | .857 | 238.858 | 42.543 | 68 | .107 | 10.51 | 3 2956.768 | 332.360 | 319.598 | 3608.727 | | 12-2022
12-2023
12-2024
12-2025
12-2026 | 2540.572
2003.997
1677.593
1449.123
1278.592 | 5818
4676
3915
3381
2978 | .540
.813
.435 | 802.939
645.363
540.382
466.638
411.096 | 138.104
108.009
90.120
77.649
68.453 | 178
149
128 |
.378
.671
.295
.647
.397 | 34.790
27.580
23.040
19.858
17.50 | 6642.522
5362.112
4722.634 | 610.341
473.564
416.859 | 988.034
750.180
608.403
534.745
480.806 | 10775.619
8003.042
6444.080
5674.236
5110.640 | | 12-2027
12-2028
12-2029
12-2030
12-2031 | 1142.781
1027.636
928.824
845.736
771.748 | 2658
2374
2148
1953
1783 | .586
.337
.875 | 366.811
327.693
296.471
269.635
246.168 | 61.189
55.198
49.989
45.604
41.556 | 91
82
75 | .327
.373
.815
.555 | 15.64
14.10
12.78
11.66
10.65 | 3584.564
3317.752
3093.330 | 313.914
290.171
269.895 | 438.199
403.052
372.615
346.761
322.959 | 4667.352
4301.528
3980.539
3709.987
3454.402 | | 12-2032
12-2033
12-2034
12-2035 | 699.869
636.111
580.724
530.450 | 1351 | .274
.101 | 223.291
203.588
186.452
170.713 | 38.020
34.697
31.845
29.282 | 57
52 | .063
.613
.917
.662 | 9.735
8.893
8.168
7.512 | 3 2511.119
3 2354.946 | 218.213
204.433 | 301.096
280.575
262.858
246.560 | 3228.069
3009.908
2822.237
2650.872 | | S TOT | 16893.372 | 39102 | .144 | 5396.097 | 912.259 | 1505 | .816 | 232.442 | L 59382.792 | 5402.003 | 6656.440 | 71441.240 | | AFTER | 3298.634 | 7626 | .726 | 1052.488 | 185.386 | 317 | .301 | 48.979 | 15763.739 | 1399.067 | 1798.904 | 18961.712 | | TOTAL | 20192.006 | 46728 | .872 | 6448.585 | 1097.646 | 1823 | . 117 | 281.42 | L 75146.528 | 6801.070 | 8455.345 | 90402.952 | | END
MO-YEAR | NET OIL
PRICE
-\$/BBL- | PRICE | NET NGL
PRICE
-\$/BBL- | SEVERA
TAXE
M\$ | ANCE AD VA
ES TA
5 | LOREM
XES
M\$ | NET
EXI | OPER (
PENSE (
M\$ | DPERATING
CASH FLOW
M\$ | EQUITY
INVESTMENT
M\$ | UNDISC NET
CASH FLOW
M\$ | DISC NET
CASH FLOW | | 12-2021 | 69.50 | 4.88 | 30.40 | 300. | 323 | 0.000 | 69 | 4.058 | 2614.347 | 0.000 | 2614.347 | 2583.929 | | 12-2022
12-2023
12-2024
12-2025
12-2026 | 64.50
61.50
59.50
60.82
62.17 | 3.90
3.42
3.17
3.24
3.30 | 28.40
27.20
26.40
26.93
27.47 | 605. | .103
.656
.981
.726 | 0.000
0.000
0.000
0.000
0.000 | 1970
1761
1619 | 7.110
6.692
2.142
9.842
2.529 | 7545.409
5420.697
4221.956
3672.671
3236.168 | 14.574
61.742
1.934
30.607
0.000 | 7530.834
5358.955
4220.022
3642.064
3236.168 | 7031.916
4544.297
3253.072
2550.628
2060.972 | | 12-2027
12-2028
12-2029
12-2030
12-2031 | 63.54
64.94
66.37
67.83
69.31 | 3.37
3.44
3.50
3.57
3.64 | 28.02
28.58
29.15
29.73
30.32 | 278.
245.
217.
195.
175. | . 229
. 744
. 642 | 0.000
0.000
0.000
0.000
0.000 | 147
143
140 | 6.554
1.148
3.180
9.185
4.441 | 2882.724
2585.152
2329.614
2105.161
1903.969 | 0.000
1.759
21.977
0.000
45.715 | 2882.724
2583.394
2307.638
2105.161
1858.253 | 1668.918
1359.521
1103.723
915.555
734.248 | | 12-2032
12-2033
12-2034
12-2035 | 70.83
72.37
73.95
75.56 | 3.71
3.79
3.86
3.94 | 30.93
31.55
32.18
32.82 | 164.
147.
136.
125. | . 106
. 170 | 0.000
0.000
0.000
0.000 | 131
130 | 7.698
5.689
2.034
5.196 | 1716.370
1547.112
1384.033
1230.179 | 17.307
33.011
3.391
1.215 | 1699.062
1514.101
1380.643
1228.963 | 610.624
494.435
410.162
331.941 | | S TOT | 65.09 | 3.59 | 28.64 | 4628. | . 185 | 0.000 | 2241 | 7.498 | 14395.560 | 233.233 | 44162.328 | 29653.940 | | AFTER | 85.03 | 4.41 | 36.73 | 894. | . 695 | 0.000 | 11879 | 9.635 | 6187.382 | 2668.930 | 3518.453 | 804.709 | | TOTAL | 68.46 | 3.73 | 30.05 | 5522. | . 880 | 0.000 | 3429 | 7.132 | 50582.944 | 2902.162 | 47680.780 | 30458.650 | | | | | | GAS
 | NGL
 | | METR: | | | | PW % | PW M\$ | | GROSS CUI
GROSS RES
NET RES.
NET REVEI
INITIAL | T., MB & MM M., MB & MM S., MB & MM , MB & MM NUE, M\$ | F 7558
F 5539
F 2019
F 109
7514 | 6.240
4.228
2.012
7.646
6.520 | 0.0
50432.136
3703.260
46728.876
1823.117
6801.069
4.880
3.922 | 6 6448.6
0 0.0
6 6448.5
7 281.4
8455.3
0 30.4 | 07
21
86
21
43
00 | LIFE
PRIM,
UNDIS
DISCO
UNDIS
DISCO
RATE
INIT | , YRS. ARY DISCOUNTED ISCOUNTED PAY SCOUNTED NET DUNTED NET OF RETURN IAL W.I., | UNT % PAYOUT, YRS. YOUT, YRS. HET/INVEST. F/INVEST. N, PCT. PCT. | 35.92
10.00
0.00
0.00
17.43
68.31
25.00
5.140 | 5.00
6.00
7.00
8.00
10.00
12.00
15.00
20.00
25.00 | 37142.996
35566.464
34123.268
32799.104
30458.664
28461.004
25968.366
24250.966
22787.142
20428.684 | Zephyr Energy LLC Proved Reserves Audit Mountrail County, ND Sproule September 30, 2021 Escalated Pricing Total PNP #### EFF DATE: 10/2021 PW DATE: 10/2021 | MO-YEAR | | PRODUCT | TION PRO | OSS NGL NI
DDUCTION PROI
MBBLS | | | ON PRODUCT | ION | NET OIL
REVENUE
M\$ | NET GAS
REVENUE
M\$ | NET NGL
REVENUE
M\$ | TOTAL NET
REVENUE
M\$ | |---|--|---|--|---|--|---|--|---|---|--|--|---| | 12-2021 | 15.901 | 32 | . 902 | 4.540 | 1.205 | 1.98 | 38 0. | 307 | 83.742 | 9.700 | 9.328 | 102.770 | | 12-2022
12-2023
12-2024
12-2025
12-2026 | 72.648
53.563
43.921
37.693
33.171 | 104
83
70
61 | | 20.210
14.421
11.580
9.793
8.531 | 5.860
4.628
3.945
3.472
3.112 | 9.33
7.07
5.89
5.12
4.55 | 13 1.
70 1.
99 0.
26 0.
56 0. | 438
091
911
791
703 | 377.939
284.598
234.698
211.192
193.464 | 24.152
18.713
16.608 | 40.827
29.686
24.041
21.305
19.319 | 455.125
338.436
277.452
249.106
227.813 | | 12-2027
12-2028
12-2029
12-2030
12-2031 | 29.659
26.769
24.310
22.181
20.310 | 49
44 | .883
.291
.616
.621
.153 | 7.574
6.802
6.157
5.606
5.127 | 2.820
2.569
2.348
2.151
1.974 | 4.10
3.73
3.40
3.12
2.86 | 33 0.
07 0.
20 0. | 634
576
526
482
442 | 179.168
166.825
155.834
145.905
136.829 | 12.824
11.937
11.144 | 17.768
16.465
15.328
14.318
13.408 | 210.771
196.114
183.099
171.367
160.664 | | 12-2032
12-2033
12-2034
12-2035 | 18.650
17.154
15.781
14.519 | 31
28 | . 105
. 376
. 876
. 576 | 4.706
4.330
3.985
3.668 | 1.814
1.669
1.535
1.413 | 2.63
2.42
2.23
2.00 | 28 0.
37 0. | 407
375
345
318 | 128.503
120.787
113.546
106.735 | 9.195
8.642 | 12.582
11.823
11.112
10.444 | 150.870
141.805
133.301
125.302 | | S TOT | 446.230 | 848 | .041 | 117.030 | 40.514 | 60.54 | 16 9. | 346 | 2639.766 | 216.475 | 267.755 | 3123.996 | | AFTER | 74.784 | 136 | . 984 | 18.904 | 7.305 | 10.53 | 34 1. | 626 | 599.366 | 44.725 | 57.506 | 701.597 | | TOTAL | 521.014 | 985 | .025 | 135.933 | 47.819 | 71.08 | 30 10. | 972 | 3239.133 | 261.200 | 325.261 | 3825.594 | | END
MO-YEAR | NET OIL N
PRICE
-\$/BBL- | NET GAS
PRICE
-\$/MCF- | NET NGL
PRICE
-\$/BBL- | SEVERANCE
TAXES
M\$ | AD VAI
TAX | OREM N
KES
4\$ | NET OPER
EXPENSE
M\$ | OPE
CAS | ERATING
SH FLOW
-M\$ | EQUITY
INVESTMENT
M\$ | UNDISC NET
CASH FLOW
M\$ | CASH FLOW | | 12-2021 | 69.50 | 4.88 | 30.40 | 9.355 | (| 0.000 | 21.150 | | 72.265 | 51.196 | 21.069 | 20.733 | | 12-2022
12-2023
12-2024
12-2025
12-2026 | 64.50
61.50
59.50
60.82
62.17 | 3.90
3.42
3.17
3.24
3.30 | 28.40
27.20
26.40
26.93
27.47 | 38.359
20.931
16.106
13.282
10.877 | (
(
(| 0.000
0.000
0.000
0.000
0.000 | 98.197
84.327
78.154
75.284
73.471 | 1 | 318.569
233.179
183.192
160.540
143.465 | 0.000
0.000
0.000
0.000
0.000 | 318.569
233.179
183.192
160.540
143.465 | 297.490
197.742
141.208
112.460
91.368 | | 12-2027
12-2028
12-2029
12-2030
12-2031 | 63.54
64.94
66.37
67.83
69.31 | 3.37
3.44
3.50
3.57
3.64 | 28.02
28.58
29.15
29.73
30.32 | 10.061
9.359
8.736
8.174
7.661 | (
(
(| 0.000
0.000
0.000
0.000
0.000 | 72.282
71.453
70.875
70.492
70.269 | 1 | 128.428
115.301
103.488
92.701
82.733 | 0.000
0.000
0.000
0.000
0.000 | 128.428
115.301
103.488
92.701
82.733 | | | 12-2032
12-2033
12-2034
12-2035 | 70.83
72.37
73.95
75.56 | 3.71
3.79
3.86
3.94 | 30.93
31.55
32.18
32.82 | 7.192
6.757
6.350
5.967 | (| 0.000
0.000
0.000
0.000 | 70.181
70.207
70.319
70.511 | | 73.497
64.841
56.632
48.825 | 0.000
0.000
0.000
0.000 | 73.497
64.841
56.632
48.825 | | | S TOT | 65.16 | 3.58 | 28.65 | 179.167 | | |
1067.171 | | 877.657 | | 1826.461 | 1196.245 | | AFTER | 82.04 | 4.25 | 35.37 | | | | | | 154.228 | 118.170 | 36.058 | 16.426 | | TOTAL | 67.74 | 3.67 | 29.64 | 212.561 | | | L581.147 | | | 169.366 | | 1212.671 | | | | OIL | | | NGL | ME | TRICS | | | | PW % | PW M\$ | | GROSS WEI
GROSS ULT
GROSS CU
GROSS RES
NET RES.
NET REVEN
INITIAL N | LLS T., MB & MMF M., MB & MMF S., MB & MMF NUE, M\$ PRICE, \$ N.I., PCT. | = 2020
= 1499
= 522
= 47
3233
69 | 5.0
0.910
9.896
1.014
7.819
9.133
9.500
7.577 | 0.0
985.025
0.000
985.025
71.080
261.200
4.880
6.758 | 135.99
0.02
135.93
10.97
325.26
30.46 | 54 PF
21 UN
33 D3
72 UN
51 D3 | IFE, YRS. RIMARY DIS NDISCOUNTED SCOUNTED NDISCOUNTED SCOUNTED ATE OF RET NITIAL W.I | COUNT
D PAYOU
PAYOU
D NET
NET/I | T % YOUT, YRS. JT, YRS. T/INVEST. INVEST. PCT. | 22.92
10.00
0.18
0.18
12.00
19.37
25.00
8.914 | PW % 5.00 6.00 7.00 8.00 10.00 12.00 15.00 17.50 20.00 25.00 | 1476.181
1415.330
1358.919
1306.568
1212.671
1131.182
1027.861
955.706
893.653
792.793 | DATE : 11/19/2021 TIME : 14:48:13 DBS : BANKUS SETTINGS : SET1021 SCENARIO : SPR_1021ESC Zephyr Energy LLC Proved Reserves Audit Mountrail County, ND Sproule September 30, 2021 Escalated Pricing Total PUD-DUC #### EFF DATE: 10/2021 PW DATE: 10/2021 | MO-YEAR | | N PRODUC | TION PR | | | PRODUCTIO | S NET NO
N PRODUCTIO
MBBLS- | N REVENUE | REVENUE | NET NGL
REVENUE
M\$ | TOTAL NET
REVENUE
M\$ | |---|---|--------------------------------------|---|---|---|--|---|--|--|--|--| | 12-2021 | 68.448 | 8 52 | .212 | 7.205 | 0.811 | 0.55 | 0.08 | 35 56.355 | 2.698 | 2.595 | 61.649 | | 12-2022
12-2023
12-2024
12-2025
12-2026 | 2294.388
826.273
481.192
332.648
251.084 | 1 823
2 585
8 493 | .259 | 256.702
113.610
80.804
68.077
61.827 | 126.821
45.721
26.899
18.732
14.217 | 40.66
29.22
24.80 | 0 6.27
0 4.51
4 3.82 | 76 2811.854
11 1600.468
29 1139.265 | 138.895
92.687
80.372 | 401.880
170.718
119.078
103.101
96.978 | 8939.710
3121.468
1812.234
1322.738
1056.311 | | 12-2027
12-2028
12-2029
12-2030
12-2031 | 200.008
165.24
140.17
121.30
106.63 | 5 309
5 263
7 228 | .451
.209
.236
.499 | 51.398
42.671
36.327
31.533
27.792 | 11.375
9.431
8.024
6.961
6.132 | 20.03
16.63
14.16
12.29
10.83 | 7 2.56
5 2.18
7 1.89 | 58 612.438
37 532.529
472.170 | 57.157
49.632
43.927 | 86.662
73.387
63.733
56.437
50.736 | 876.874
742.981
645.894
572.533
515.232 | | 12-2032
12-2033
12-2034
12-2035 | 94.926
85.382
77.46!
70.783 | 2 161
5 147 | .694
.960
.214
.772 | 24.798
22.350
20.316
18.599 | 5.469
4.928
4.478
4.098 | 8.71
7.92 | 3 1.3 ²
4 1.2 ² | 356.635
331.118 | 33.018
30.614 | 46.178
42.455
39.363
36.758 | 469.468
432.108
401.094
374.963 | | S TOT | 5315.95 | 5 6260 | .928 | 864.008 | 294.095 | 317.32 | 7 48.98 | 33 18821.426 | 1133.776 | 1390.058 | 21345.258 | | AFTER | 510.324 | 4 1003 | .374 | 138.466 | 30.506 | 54.36 | 1 8.39 | 2613.045 | 240.634 | 309.405 | 3163.084 | | TOTAL | 5826.280 | 7264 | .302 | 1002.474 | 324.601 | 371.68 | 8 57.37 | 75 21434.470 | 1374.411 | 1699.463 | 24508.342 | | END
MO-YEAR | NET OIL
PRICE
-\$/BBL- | NET GAS
PRICE
-\$/MCF- | NET NGL
PRICE
-\$/BBL- | SEVERAN
TAXES | NCE AD VAI
5 TAX | LOREM N
XES
M\$ | ET OPER
EXPENSE
M\$ | OPERATING
CASH FLOW | EQUITY
INVESTMENT
M\$ | UNDISC NET
CASH FLOW | DISC NET
CASH FLOW
M\$ | | 12-2021 | 69.50 | 4.88 | 30.40 | 5.9 | 924 (| 0.000 | 5.750 | 49.975 | | | -4460.416 | | 12-2022
12-2023
12-2024
12-2025
12-2026 | 64.50
61.50
59.50
60.82
62.17 | 3.90
3.42
3.17
3.24
3.30 | 28.40
27.20
26.40
26.93
27.47 | 173.4
125.5
99.2 | 180
531
280 | 0.000
0.000
0.000
0.000
0.000 | 938.470
429.586
320.637
244.354
227.869 | 7138.274
2391.502
1318.116
952.852
729.162 | 297.613
264.868
0.000
0.000
0.000 | 6840.662
2126.634
1318.116
952.852
729.162 | 6436.018
1811.987
1018.205
668.480
464.794 | | 12-2027
12-2028
12-2029
12-2030
12-2031 | 63.54
64.94
66.37
67.83
69.31 | 3.37
3.44
3.50
3.57
3.64 | 28.02
28.58
29.15
29.73
30.32 | 69.0
33.6
27.0 | ,,_ , | 0.000
0.000
0.000
0.000
0.000 | 212.640
195.483
183.532
174.979
168.748 | 582.249
478.419
428.672
370.482
322.130 | 0.000
0.000
0.000
0.000
0.000 | 582.249
478.419
428.672
370.482
322.130 | 337.336
251.926
205.114
161.183
127.394 | | 12-2032
12-2033
12-2034
12-2035 | 70.83
72.37
73.95
75.56 | 3.71
3.79
3.86
3.94 | 30.93
31.55
32.18
32.82 | 20.4
18.9 | 110 (
938 (| 0.000
0.000
0.000
0.000 | 164.177
160.837
158.436
156.769 | 283.108
250.862
223.721
200.496 | | 283.108
250.862
223.721
200.496 | 101.776
81.981
66.462
54.146 | | S TOT | 64.00 | 3.57 | 28.38 | 1882.9 | 971 (| 0.000 3 | 742.267 | 15720.021 | 5142.488 | 10577.533 | 7326.386 | | AFTER | 85.66 | 4.43 | 36.87 | 148.9 | 960 (| 0.000 1 | | | 227.312 | 848.995 | 178.094 | | TOTAL | 66.03 | 3.70 | 29.62 | 2031.9 | 931 (| 0.000 5 | 680.083 | 16796.328 | 5369.800 | 11426.528 | 7504.480 | | | | OIL | | GAS | NGL | | TRICS | | | | PW M\$ | | GROSS CUM | LLS T., MB & MM M., MB & MM S., MB & MM S., MB & MM NUE, M\$ PRICE, \$ N.I., PCT. | MF 582
MF | 13.0
6.281
0.000
6.281 | 0.0
7264.302
0.000
7264.302
371.688
1374.411
3.984
1.185 | 1002.4
0.00
1002.4
57.33
1699.40
28.50 | LI
74 PR
00 UN
74 DI
75 UN
63 DI
65 RA
IN | FE, YRS. IMARY DISCO DISCOUNTED SCOUNTED PA DISCOUNTED NO SCOUNTED NO THE OF RETUR TITIAL W.I., | DUNT % PAYOUT, YRS. AYOUT, YRS. NET/INVEST. ET/INVEST. ET/INVEST. NN, PCT. | 27.17
10.00
0.91
0.94
3.13
2.49
25.00
6.745 | 5.00
6.00
7.00
8.00
10.00
12.00
15.00
17.50
20.00
25.00 | 9060.344
8699.107
8365.750
8057.243
7504.480
7023.341
6407.408
5970.322
5587.620
4946.690 | DATE : 11/19/2021 TIME : 14:48:16 DBS : BANKUS SETTINGS : SET1021 SCENARIO : SPR_1021ESC Zephyr Energy LLC Proved Reserves Audit Mountrail County, ND Sproule September 30, 2021 Escalated Pricing Total PUD-Undrilled #### DATE : 11/19/2021 TIME : 14:48:24 DBS : BANKUS SETTINGS : SET1021 SCENARIO : SPR_1021ESC EFF DATE: 10/2021 PW DATE: 10/2021 | | GROSS OII PRODUCTION | N PRODUC | TION PF | | NET OIL
PRODUCTION
MBBLS | PRODUCTIO | N PRODUCT | ION | NET OIL
REVENUE
M\$ | NET GAS
REVENUE
M\$ | NET NGL
REVENUE
M\$ | TOTAL NET
REVENUE
M\$ | |--|--|--------------------------------------|---|---|---|--|--|--|--|--|--|--| | 12-2021 | 46.64 | 5 35 | .271 | 4.867 | 1.846 | 1.24 | 8 0. | 193 | 128.325 | 6.091 | 5.857 | 140.273 | | 12-2022
12-2023
12-2024
12-2025
12-2026 | 2488.013
3891.586
3191.593
1542.224
1029.055 | 6 3318
1 2991
4 1844 | .082
.065
.634 | 273.628
457.895
412.767
254.560
210.109 | 42.115
85.603
86.704
39.041
25.435 | 64.45
70.14
40.39 | 6 9.
2 10.
0 6. | 707
950
827
235
035 | 2716.394
5264.600
5158.904
2374.476
1581.283 | 119.044
220.181
222.490
130.876
107.594 | 133.677
270.628
285.840
167.887
138.290 | 2969.116
5755.409
5667.234
2673.240
1827.168 | | 12-2027
12-2028
12-2029
12-2030
12-2031 | 769.41
611.70
505.79
429.89
372.93 | 4 1193
6 1011
7 859 | .223 | 188.525
164.665
139.600
118.652
102.930 | 18.797
14.845
12.224
10.361
8.972 | 25.64
21.85
18.52 | 3 3.
7 3.
6 2. | 473
958
374
860
476 | 1194.369
964.050
811.323
702.817
621.827 | 97.573
88.096
76.583
66.179
58.398 | 125.317
113.111
98.342
85.026
75.088 | 1417.258
1165.257
986.249
854.023
755.313 | | 12-2032
12-2033
12-2034
12-2035 |
328.68!
288.390
256.222
229.870 | 6 576
2 512 | .370
.792
.444
.740 | 90.717
79.597
70.717
63.444 | 7.897
6.944
6.234
5.549 | 12.41
11.14 | 5 1.
7 1. | 179
916
721
531 | 559.289
502.534
461.017
419.270 | 52.429
47.024
43.063
39.096 | 67.412
60.463
55.370
50.269 | 679.130
610.021
559.450
508.636 | | S TOT | 15982.036 | 6 19077 | .344 | 2632.674 | 372.568 | 397.99 | 1 61. | 435 | 23460.478 | 1374.718 | 1732.579 | 26567.776 | | AFTER | 1717.688 | 8 3435 | .377 | 474.082 | 42.161 | 75.38 | 3 11. | 636 | 3631.456 | 335.333 | 431.167 | 4397.958 | | TOTAL | 17699.72 | 4 22512 | .720 | 3106.756 | 414.728 | 473.37 | 5 73. | 071 | 27091.934 | 1710.051 | 2163.746 | 30965.734 | | END
MO-YEAR | NET OIL
PRICE
-\$/BBL- | NET GAS
PRICE
-\$/MCF- | PRICE | | NCE AD VA
S TA | LOREM N
XES
M\$ | ET OPER
EXPENSE
M\$ | | ERATING
SH FLOW I
-M\$ | EQUITY
INVESTMENT
M\$ | UNDISC NET
CASH FLOW | DISC NET
CASH FLOW
M\$ | | 12-2021 | 69.50 | 4.88 | 30.40 | 13. | | 0.000 | 13.131 | : | 113.659 | 1681.035 | -1567.376 | -1546.612 | | 12-2022
12-2023
12-2024
12-2025
12-2026 | 64.50
61.50
59.50
60.82
62.17 | 3.90
3.42
3.17
3.24
3.30 | 28.40
27.20
26.40
26.93
27.47 | 556.
548.
5255. | 599
887
136
005
849 | 0.000
0.000
0.000 | 332.220
735.827
827.275
506.983
399.634 | 4:
4:
1: | 350.296
462.695
291.824
911.252
255.684 | 3260.109
2454.006
171.794
128.910
0.000 | -909.813
2008.689
4120.030
1782.342
1255.684 | -714.548
1820.001
3201.424
1253.304
801.226 | | 12-2027
12-2028
12-2029
12-2030
12-2031 | 63.54
64.94
66.37
67.83
69.31 | 3.37
3.44
3.50
3.57
3.64 | 28.02
28.58
29.15
29.73
30.32 | 3 105.
74.
50. | 429
424
310
037
911 | 0.000
0.000
0.000 | 334.845
296.132
277.062
260.545
248.973 | | 951.985
763.702
634.877
543.441
469.428 | 0.000
0.000
0.000
0.000
0.000 | 951.985
763.702
634.877
543.441
469.428 | 551.803
402.280
303.914
236.452
185.661 | | 12-2032
12-2033
12-2034
12-2035 | 70.83
72.37
73.95
75.56 | 3.71
3.79
3.86
3.94 | 30.93
31.55
32.18
32.82 | 28.
26. | 798
401 | 0.000
0.000 | 240.714
226.203
219.563
205.536 | | 406.345
355.020
313.486
279.105 | 0.000
15.225
5.658
12.910 | 406.345
339.795
307.828
266.195 | 146.098
110.869
91.505
71.754 | | S TOT | 62.97 | 3.45 | 28.20 | 2340. | 335 | 0.000 5 | 124.641 | 19 | 102.800 | 7729.646 | 11373.153 | 6915.133 | | AFTER | 86.13 | 4.45 | 37.05 | 207. | 066 | 0.000 2 | 626.365 | 1 | 564.525 | 290.961 | 1273.564 | 258.275 | | TOTAL | 65.32 | 3.61 | 29.61 | | 401 | 0.000 7 | 751.006 | 20 | 667.326 | 8020.608 | 12646.717 | 7173.408 | | | | OIL | | GAS | NGL | | TRICS | | | | PW % | PW M\$ | | GROSS CUI
GROSS RES
NET RES.
NET REVEI
INITIAL I | T., MB & MM M., MB & MM S., MB & MM , MB & MM NUE. M\$ | MF 1769
MF 1769
MF 41
2709 | 47.0
9.722
0.000
9.722 | 0.0
22512.720
0.000
22512.720
473.375
1710.051
3.670
3.958 | 3106.7
0.0
3106.7
73.0
2163.7
27.7 | LI
55 PR
00 UN
55 DI
71 UN
46 DI
68 RA
IN | FE, YRS. IMARY DIS DISCOUNTE SCOUNTED DISCOUNTE SCOUNTED TE OF RET ITIAL W.I | COUN
D PA
PAYO
D NE
NET/
URN, | T % YOUT, YRS. UT, YRS. T/INVEST. INVEST. PCT. CT. | 30.58
10.00
2.36
2.39
2.58
2.05
25.00
2.757 | 5.00
6.00
7.00
8.00
10.00
12.00
15.00
17.50
20.00
25.00 | 9305.055
8804.427
8345.227
7922.944
7173.407
6529.559
5719.312
5155.720
4671.453
3883.399 | Zephyr Energy LLC Proved Reserves Audit Mountrail County, ND Sproule September 30, 2021 Escalated Pricing Grand Total Proved #### EFF DATE: 10/2021 PW DATE: 10/2021 | | | | ON PRODUC | CTION PRO | | | ΓΙΟN | | ION | NET OIL
REVENUE
M\$ | NET GAS
REVENUE
M\$ | NET NGL
REVENUE
M\$ | TOTAL NET
REVENUE
M\$ | |---|---|---|---|--|---|----------------------------------|--|---|---------------------------------|---|--|--|--| | 12-2021 | 910.610 | 1851.2 | 42 255 | 5.471 | 46.406 | 71. | . 895 | 11. | 098 | 3225.191 | 350.850 | 337.378 | 3913.419 | | 12-2022
12-2023
12-2024
12-2025
12-2026 | 7395.621
6775.418
5394.298
3361.689
2591.902 | 9807.80
8922.33
7576.33
5790.33
5011.33 | 80 1231
24 1045
51 799 | 9.068 | 312.899
243.961
207.667
138.895
111.217 | 356
290
254
198
173 | . 858
. 557
. 966 | 44.
39.
30. | 085
898
294
713
773 | 20181.984
15003.574
12356.182
8447.566
6914.377 | 1393.166
993.570
807.455
644.715
572.160 | 1564.418
1221.213
1037.363
827.038
735.393 | 23139.570
17218.354
14201.000
9919.320
8221.932 | | 12-2027
12-2028
12-2029
12-2030
12-2031 | 2141.863
1831.354
1599.105
1419.120
1271.630 | 4451.50
3926.33
3467.73
3082.73
2768.24 | 10 541
81 478
88 425 | 1.308
1.831
3.554
5.425
2.018 | 94.181
82.043
72.585
65.078
58.635 | 154
137
122
109
98 | . 385
. 244 | 21.
18.
16. | 842
207
870
902
242 | 5984.237
5327.878
4817.438
4414.223
4063.960 | 520.071
471.990
428.323
391.145
359.461 | 667.946
606.014
550.019
502.542
462.191 | 7172.256
6405.880
5795.780
5307.911
4885.612 | | 12-2032
12-2033
12-2034
12-2035 | 1142.130
1027.043
930.193
845.620 | 2489.22
2245.40
2039.63
1858.13 | 02 309
35 281 | 3.513
9.865
1.470
5.423 | 53.200
48.237
44.092
40.342 | 81
74 | . 490
. 174
. 224
. 900 | 12.
11. | 814
530
457
481 | 3767.968
3491.076
3260.628
3048.176 | 332.300
307.450
286.752
267.564 | 427.268
395.315
368.702
344.031 | 4527.537
4193.842
3916.082
3659.773 | | S TOT | 38637.596 | 65288.40 | 60 9009 | 9.809 | L619.436 | 2281 | . 680 | 352. | 206 | 104304.456 | 8126.972 | 10046.832 | 122478.272 | | AFTER | 5601.431 | 12202.4 | 60 1683 | 3.940 | 265.358 | 457 | . 580 | 70. | 633 | 22607.608 | 2019.760 | 2596.982 | 27224.348 | | TOTAL | 44239.028 | 77490.9 | 20 10693 | 3.749 1 | L884.795 | 2739 | .260 | 422. | 839 | 126912.064 | 10146.732 | 12643.814 | 149702.624 | | END
MO-YEAR | NET OIL N
PRICE
-\$/BBL | PRICE I | | | E AD VAL
TAX | | | OPER
PENSE
M\$ | | ERATING
SH FLOW I
-M\$ | EQUITY
INVESTMENT
M\$ | UNDISC NET
CASH FLOW
M\$ | DISC NET
CASH FLOW
M\$ | | 12-2021 | 69.50 | 4.88 | 30.40 | 329.085 | | | 73 | 4.088 | 2 | 850.246 | 6312.238 | -3461.992 | -3402.365 | | 12-2022
12-2023
12-2024
12-2025
12-2026 | 64.50
61.50
59.50
60.82
62.17 | 3.90
3.42
3.17
3.24
3.30 | 28.40
27.20
26.40
26.93
27.47 | 2061.028
1483.854
1197.703
775.544
603.948 | 1 (
3 (
1 (
3 (| | 322
298
244 | 5.997
6.431
8.207
6.463
3.504 | 12
10
6 | 304.400 | 3572.296
2780.616
173.728
159.517
0.000 | 13780.252
9727.457
9841.362
6537.797
5364.480 | 13050.876
8374.028
7613.908
4584.873
3418.360 | | 12-2027
12-2028
12-2029
12-2030
12-2031 | 63.54
64.94
66.37
67.83
69.31 | 3.37
3.44
3.50
3.57
3.64 | 28.02
28.58
29.15
29.73
30.32 | 500.550
429.091
334.479
280.925
244.921 | L () | | 203
196
191 | 6.321
4.216
4.650
5.200
2.432 | 3:
3:
3: | 545.386
942.574
496.652
111.786
778.260 | 0.000
1.759
21.977
0.000
45.715 | 4545.386
3940.816
3474.675
3111.786
2732.545 | 2632.410
2074.413
1662.268
1353.514
1080.021 | | 12-2032
12-2033
12-2034
12-2035 | 70.83
72.37
73.95
75.56 | 3.71
3.79
3.86
3.94 | 30.93
31.55
32.18
32.82 | 225.447
203.070
187.859
173.159 |) (| 0.000
0.000
0.000
0.000 | 177
175 | 2.770
2.936
0.351
8.012 | 2:
1: | 479.318
217.835
977.872
758.605 | 17.307
48.236
9.048
14.126 | 2462.011
2169.599
1968.824
1744.479 | 884.923
708.480
584.960
471.034 | | S TOT | 64.41 | 3.56 | 28.53 | 9030.658 | 3 (| 0.000 | 3235 | 1.578 | 81 | 096.048 | 13156.563 | 67939.480 | 45091.700 | | AFTER | 85.20 | 4.41 | 36.77 | 1284.115 | 5 (| 0.000 | 1695 | 7.790 | 8 | 982.443 | 3305.372 | 5677.072 | 1257.505 | | TOTAL | 67.33 | 3.70 | | L0314.773 | 3 (| 0.000 | | | | | 16461.935 | 73616.552 | 46349.204 | | | | OIL | GAS | | NGL | | METR | ICS | | | | PW % | PW M\$ | | GROSS CU | LLS T., MB & MMF M., MB & MMF S., MB & MMF NB, MB & MMF NUE, M\$ PRICE, \$ N.I., PCT. | 244
101133.1
56894.1 | 4.0
152 8119
124 370 | 0.0
94.192
93.260
90.928
89.260 | 10693.76
0.02
10693.72
422.83
12643.81
28.12 | 58
21
47
39
15 | LIFE
PRIM
UNDI
DISC
UNDI
DISC
RATE
INIT |
, YRS. ARY DIS SCOUNTE OUNTED SCOUNTE OUNTED OF RET IAL W.I | COUND PAYOUT NET/EURN, | T % YOUT, YRS. UT, YRS. T/INVEST. INVEST. PCT. CT. | 35.92
10.00
0.50
0.51
5.47
4.74
25.00
3.867 | PW % 5.00 6.00 7.00 8.00 10.00 12.00 15.00 17.50 20.00 25.00 | 56984.576
54485.328
52193.192
50085.860
46349.224
43145.088
39122.948
36332.712
33939.868
30051.564 | DATE : 11/19/2021 TIME : 14:48:24 DBS : BANKUS SETTINGS : SET1021 SCENARIO : SPR_1021ESC # APPENDIX B: ABBREVIATIONS This appendix contains a list of abbreviations found in Sproule reports, as well as a table comparing Imperial and Metric units. Two conversion tables, used to prepare this report, are also provided. AOF absolute open flow ARTC Alberta Royalty Tax Credit BOE barrels of oil equivalent bopd barrels of oil per day bwpd barrels of water per day Cr Crown DCQ daily contract quantity DSU drilling spacing unit DUC drilled uncompleted FH Freehold GCA gas cost allowance GOR gas-oil ratio GORR gross overriding royalty LPG liquid petroleum gas M Millions MMZAR Millions of South African ZAR's m thousands mcfd thousands of cubic feet per day Mcfpd thousands of cubic feet per day MPR maximum permissive rate MRL maximum rate limitation NC 'new' Crown NCI net carried interest NGL natural gas liquids NORR net overriding royalty NPI net profits interest OC 'old' Crown ORRI overriding royalty interest P&NG petroleum and natural gas PSU production spacing unit PVT pressure-volume-temperature TCGSL TransCanada Gas Services Limited UOCR Unit Operating Cost Rates for operating gas cost allowance WI working interest | | Imperial Units | | | Metric Units | |-----------------------|---------------------------------|-------------|----------------------------------|--------------------------------| | M (10 ³) | thousand | Prefixes | k (10 ³) | kilo | | MM (10 ⁶) | million | | M (10 ⁶) | mega | | B (10 ⁹) | billion | | G (10 ⁹) | giga | | T (10 ¹²) | trillion | | T (10 ¹²) | tera | | Q (10 ¹⁵) | quadrillion | | P (10 ¹⁵) | peta | | in. | inches | Length | cm | centimetres | | ft | feet | | m | metres | | mi | miles | | km | kilometres | | ft² | square feet | Area | m ² | square metres | | ac | acres | | ha | hectares | | cf or ft ³ | cubic feet | Volume | m ³ | cubic metres | | scf | standard cubic feet | | | | | gal | gallons | | L | litres | | Mcf | thousand cubic feet | | | | | MMcf | million cubic feet | | | | | Bcf | billion cubic feet | | e ⁶ m ³ | million cubic metres | | bbl | barrels | | m ³ | cubic metres | | Mbbl | thousand barrels | | e ³ m ³ | thousand cubic metres | | stb | stock tank barrels | | stm ³ | stock tank cubic metres | | bbl/d | barrels per day | Rate | m³/d | cubic metre per day | | Mbbl/d | thousand barrels per day | | e ³ m ³ /d | thousand cubic metres | | Mcf/d | thousand cubic feet per day | | e ³ m ³ /d | thousand cubic metres | | MMcf/d | million cubic feet per day | | e ⁶ m ³ /d | million cubic metres | | Btu | British thermal units | Energy | J | joules | | | | | | | | | alinace | Mana | | grama | | oz
Ib | ounces | Mass | g | grams | | | pounds | | kg | kilograms | | ton | tons long tons | | t | tonnes | | II. | long tons | | | | | psi | pounds per square inch | Pressure | Pa | pascals | | | | | kPa | kilopascals (10 ³) | | psia | pounds per square inch absolute | | | | | psig | pounds per square inch gauge | | | | | °F | degrees Fahrenheit | Temperature | °C | degrees Celsius | | °R | degrees Rankine | | К | degrees Kelvin | | M\$ | thousand dollars | Dollars | k\$ | 1 kilodollar | | | Imperial Units | | | Metric Units | |-----|----------------|------|-----|--------------| | sec | second | Time | s | second | | min | minute | | min | minute | | hr | hour | | h | hour | | d | day | | d | day | | wk | week | | | week | | mo | month | | | month | | yr | year | | а | annum | | С | onversion Factors – | – Metric to Imperial | |---|---------------------|---| | | | | | cubic metres (m³) (@ 15°C) | x 6.29010 | = barrels (bbl) (@ 60°F), water | | m ³ (@ 15°C) | x 6.3300 | = bbl (@ 60°F), Ethane | | m ³ (@ 15°C) | x 6.30001 | = bbl (@ 60°F), Propane | | m ³ (@ 15°C) | x 6.29683 | = bbl (@ 60°F), Butanes | | m ³ (@ 15°C) | x 6.29287 | = bbl (@ 60°F), oil, Pentanes Plus | | m³ (@ 101.325 kPaa, 15°C) | x 0.0354937 | = thousands of cubic feet (Mcf) (@ 14.65 psia, 60°F) | | 1,000 cubic metres (10 ³ m³) (@ 101.325 kPaa, 15°C) | x 35.49373 | = Mcf (@ 14.65 psia, 60°F) | | hectares (ha) | x 2.4710541 | = acres | | 1,000 square metres (10 ³ m ²) | x 0.2471054 | = acres | | 10,000 cubic metres (haˈm) | x 8.107133 | = acre feet (ac-ft) | | m³/10³m³ (@ 101.325 kPaa, 15° C) | x 0.0437809 | = Mcf/Ac.ft. (@ 14.65 psia, 60°F) | | joules (j) | x 0.000948213 | = Btu | | megajoules per cubic metre (MJ/m³) | x 26.714952 | = British thermal units per standard cubic foot (Btu/so | | (@ 101.325 kPaa, 15°C) | | (@ 14.65 psia, 60°F) | | dollars per gigajoule (\$/GJ) | x 1.054615 | = \$/Mcf (1,000 Btu gas) | | metres (m) | x 3.28084 | = feet (ft) | | kilometres (km) | x 0.6213712 | = miles (mi) | | dollars per 1,000 cubic metres (\$/10 ³ m ³) | x 0.0288951 | = dollars per thousand cubic feet (\$/Mcf) (@ 15.025 psia) B.C. | | (\$/10 ³ m ³) | x 0.02817399 | = \$/Mcf (@ 14.65 psia) Alta. | | dollars per cubic metre (\$/m³) | x 0.158910 | = dollars per barrel (\$/bbl) | | gas/oil ratio (GOR) (m³/m³) | x 5.640309 | = GOR (scf/bbl) | | kilowatts (kW) | x 1.341022 | = horsepower | | kilopascals (kPa) | x 0.145038 | = psi | | tonnes (t) | x 0.9842064 | = long tons (LT) | | kilograms (kg) | x 2.204624 | = pounds (lb) | | litres (L) | x 0.2199692 | = gallons (Imperial) | | litres (L) | x 0.264172 | = gallons (U.S.) | | cubic metres per million cubic metres (m³/10 ⁶ m³) (C₃) | x 0.177496 | = barrels per million cubic feet (bbl/MMcf) (@ 14.65 psia) | | $m^3/10^6m^3$) (C ₄) | x 0.1774069 | = bbl/MMcf (@ 14.65 psia) | | $m^3/10^6m^3$) (C ₅₊) | x 0.1772953 | = bbl/MMcf (@ 14.65 psia) | | tonnes per million cubic metres (t/10 ⁶ m³) (sulphur) | x 0.0277290 | = LT/MMcf (@ 14.65 psia) | | millilitres per cubic meter (mL/m³) (C ₅₊) | x 0.0061974 | = gallons (Imperial) per thousand cubic feet (gal (Imp)/Mcf) | | (mL/m^3) (C_{5+}) | x 0.0074428 | = gallons (U.S.) per thousand cubic feet (gal (U.S.)/Mcf) | | Kelvin (K) | x 1.8 | = degrees Rankine (°R) | | millipascal seconds (mPa's) | x 1.0 | = centipoise | | density (kg/m3), ρ | ρ÷1000x141.5- | = °API | | | 131.5 | | | Conversion | Factors — Imperial | to Metric | |--|--------------------|---| | | | | | barrels (bbl) (@ 60°F) | x 0.15898 | = cubic metres (m³) (@ 15°C), water | | bbl (@ 60°F) | x 0.15798 | = m³ (@ 15°C), Ethane | | bbl (@ 60°F) | x 0.15873 | = m³ (@ 15°C), Propane | | bbl (@ 60°F) | x 0.15881 | = m³ (@ 15°C), Butanes | | bbl (@ 60°F) | x 0.15891 | = m³ (@ 15°C), oil, Pentanes Plus | | thousands of cubic feet (Mcf) (@ 14.65 psia, 60°F) | x 28.17399 | = m³ (@ 101.325 kPaa, 15°C) | | Mcf (@ 14.65 psia, 60°F) | x 0.02817399 | = 1,000 cubic metres (10 ³ m ³) (@ 101.325 kPaa, 15°C) | | acres | x 0.4046856 | = hectares (ha) | | acres | x 4.046856 | = 1,000 square metres (10 ³ m ²) | | acre feet (ac-ft) | x 0.123348 | = 10,000 cubic metres (10 ⁴ m³) (ha⁻m) | | Mcf/ac-ft (@ 14.65 psia, 60°F) | x 22.841028 | = 10 ³ m ³ /m ³ (@ 101.325 kPaa, 15°C) | | Btu | x 1054.615 | = joules (J) | | British thermal units per standard cubic foot (Btu/Scf) | x 0.03743222 | = megajoules per cubic metre (MJ/m³) | | (@ 14.65 psia, 60°F) | | (@ 101.325 kPaa, 15°C) | | \$/Mcf (1,000 Btu gas) | x 0.9482133 | = dollars per gigajoule (\$/GJ) | | \$/Mcf (@ 14.65 psia, 60°F) Alta. | x 35.49373 | = \$/10 ³ m³ (@ 101.325 kPaa, 15°C) | | \$/Mcf (@ 15.025 psia, 60°F), B.C. | x 34.607860 | = \$/10 ³ m³ (@ 101.325 kPaa, 15°C) | | feet (ft) | x 0.3048 | = metres (m) | | miles (mi) | x 1.609344 | = kilometres (km) | | dollars per barrel (\$/bbl) | x 6.29287 | = dollars per cubic metre (\$/m³) | | GOR (scf/bbl) | x 0.177295 | = gas/oil ratio (GOR) (m³/m³) | | horsepower | x 0.7456999 | = kilowatts (kW) | | psi | x 6.894757 | = kilopascals (kPa) | | long tons (LT) | x 1.016047 | = tonnes (t) | | pounds (lb) | x 0.453592 | = kilograms (kg) | | gallons (Imperial) | x 4.54609 | = litres (L) (.001 m³) | | gallons (U.S.) | x 3.785412 | = litres (L) (.001 m³) | | barrels per million cubic feet (bbl/MMcf) (@ 14.65 psia) (C ₃) | x 5.6339198 | = cubic metres per million cubic metres (m³/10 ⁶ m³) | | bbl/MMcf (C ₄) | x 5.6367593 | $= (m^3/10^6 m^3)$ | | bbl/MMcf (C _{5*}) | x 5.6403087 | $= (m^3/10^6 m^3)$ | | LT/MMcf (sulphur) | x 36.063298 | = tonnes per million cubic metres (t/10 ⁶ m ³) | | gallons (Imperial) per thousand cubic feet (gal (Imp)/Mcf) (C_{5*}) | x 161.3577 | = millilitres per cubic meter (mL/m³) | | gallons (U.S.) per thousand cubic feet (gal (U.S.)/Mcf) (C_{5+}) | x 134.3584 | = (mL/m³) | | degrees Rankine (°R) | x 0.55556 | = Kelvin (K) | | centipoises | x 1.0 | = millipascal seconds (mPa's) | | °API | (°APIx131.5)x | = density (kg/m3) | | | 1000/141.5 | | | С | onversion Factors – | – Metric to Imperial | |---|---------------------|---| | | | | | cubic metres (m³) (@ 15°C) | x 6.29010 | = barrels (bbl) (@ 60°F), water | | m ³ (@ 15°C) | x 6.3300 | = bbl (@ 60°F), Ethane | | m ³ (@ 15°C) | x 6.30001 | = bbl (@ 60°F), Propane | | m ³ (@ 15°C) | x 6.29683 | = bbl (@ 60°F), Butanes | | m ³ (@ 15°C) | x 6.29287 | = bbl (@ 60°F), oil, Pentanes Plus | | m³ (@ 101.325 kPaa, 15°C) | x 0.0354937 | = thousands of cubic feet (Mcf) (@ 14.65 psia, 60°F) | | 1,000 cubic metres (10 ³ m³) (@ 101.325
kPaa, 15°C) | x 35.49373 | = Mcf (@ 14.65 psia, 60°F) | | hectares (ha) | x 2.4710541 | = acres | | 1,000 square metres (10 ³ m ²) | x 0.2471054 | = acres | | 10,000 cubic metres (haˈm) | x 8.107133 | = acre feet (ac-ft) | | m³/10³m³ (@ 101.325 kPaa, 15° C) | x 0.0437809 | = Mcf/Ac.ft. (@ 14.65 psia, 60°F) | | joules (j) | x 0.000948213 | = Btu | | megajoules per cubic metre (MJ/m³) | x 26.714952 | = British thermal units per standard cubic foot (Btu/so | | (@ 101.325 kPaa, 15°C) | | (@ 14.65 psia, 60°F) | | dollars per gigajoule (\$/GJ) | x 1.054615 | = \$/Mcf (1,000 Btu gas) | | metres (m) | x 3.28084 | = feet (ft) | | kilometres (km) | x 0.6213712 | = miles (mi) | | dollars per 1,000 cubic metres (\$/10 ³ m ³) | x 0.0288951 | = dollars per thousand cubic feet (\$/Mcf) (@ 15.025 psia) B.C. | | (\$/10 ³ m ³) | x 0.02817399 | = \$/Mcf (@ 14.65 psia) Alta. | | dollars per cubic metre (\$/m³) | x 0.158910 | = dollars per barrel (\$/bbl) | | gas/oil ratio (GOR) (m³/m³) | x 5.640309 | = GOR (scf/bbl) | | kilowatts (kW) | x 1.341022 | = horsepower | | kilopascals (kPa) | x 0.145038 | = psi | | tonnes (t) | x 0.9842064 | = long tons (LT) | | kilograms (kg) | x 2.204624 | = pounds (lb) | | litres (L) | x 0.2199692 | = gallons (Imperial) | | litres (L) | x 0.264172 | = gallons (U.S.) | | cubic metres per million cubic metres (m³/10 ⁶ m³) (C₃) | x 0.177496 | = barrels per million cubic feet (bbl/MMcf) (@ 14.65 psia) | | $m^3/10^6m^3)$ (C ₄) | x 0.1774069 | = bbl/MMcf (@ 14.65 psia) | | $m^3/10^6m^3$) (C ₅₊) | x 0.1772953 | = bbl/MMcf (@ 14.65 psia) | | tonnes per million cubic metres (t/10 ⁶ m³) (sulphur) | x 0.0277290 | = LT/MMcf (@ 14.65 psia) | | millilitres per cubic meter (mL/m³) (C ₅₊) | x 0.0061974 | = gallons (Imperial) per thousand cubic feet (gal (Imp)/Mcf) | | (mL/m³) (C ₅₊) | x 0.0074428 | = gallons (U.S.) per thousand cubic feet (gal (U.S.)/Mcf) | | Kelvin (K) | x 1.8 | = degrees Rankine (°R) | | millipascal seconds (mPa's) | x 1.0 | = centipoise | | density (kg/m3), ρ | ρ÷1000x141.5- | = °API | | | 131.5 | | # **APPENDIX C: PRMS GUIDANCE** The following is an excerpt of the Resources Classification and Categorization Guidelines from the Petroleum Resources Management System 2018, sponsored by Society of Petroleum Engineers ("SPE"), World Petroleum Council ("WPC"), American Association of Petroleum Geologists ("AAPG"), Society of Petroleum Evaluation Engineers ("SPEE"), Society of Exploration Geophysicists ("SEG"), Society of Petrophysicists and Well Log Analysts ("SPWLA"), and the European Association of Geoscientists & Engineers ("EAGE"). # 2.0 Classification and Categorization Guidelines 2.0.0.1 To consistently characterize petroleum projects, evaluations of all resources should be conducted in the context of the full classification system shown in Figure 1.1. These guidelines reference this classification system and support an evaluation in which projects are "classified" based on their chance of commerciality, P_c (the vertical axis labeled Chance of Commerciality), and estimates of recoverable and marketable quantities associated with each project are "categorized" to reflect uncertainty (the horizontal axis). The actual workflow of classification versus categorization varies with individual projects and is often an iterative analysis leading to a final report. Report here refers to the presentation of evaluation results within the entity conducting the assessment and should not be construed as replacing requirements for public disclosures under guidelines established by regulatory and/or other government agencies. ### 2.1 Resources Classification 2.1.0.1 The PRMS classification establishes criteria for the classification of the total PIIP. A determination of a discovery differentiates between discovered and undiscovered PIIP. The application of a project further differentiates the recoverable from unrecoverable resources. The project is then evaluated to determine its maturity status to allow the classification distinction between commercial and sub-commercial projects. PRMS requires the project's recoverable resources quantities to be classified as either Reserves, Contingent Resources, or Prospective Resources. ### 2.1.1 Determination of Discovery Status - 2.1.1.1 A discovered petroleum accumulation is determined to exist when one or more exploratory wells have established through testing, sampling, and/or logging the existence of a significant quantity of potentially recoverable hydrocarbons and thus have established a known accumulation. In the absence of a flow test or sampling, the discovery determination requires confidence in the presence of hydrocarbons and evidence of producibility, which may be supported by suitable producing analogs (see Section 4.1.1, Analogs). In this context, "significant" implies that there is evidence of a sufficient quantity of petroleum to justify estimating the in-place quantity demonstrated by the well(s) and for evaluating the potential for commercial recovery. - 2.1.1.2 Where a discovery has identified recoverable hydrocarbons, but is not considered viable to apply a project with established technology or with technology under development, such quantities may be classified as Discovered Unrecoverable with no Contingent Resources. In future evaluations, as appropriate for petroleum resources management purposes, a portion of these unrecoverable quantities may become recoverable resources as either commercial circumstances change or technological developments occur. ## 2.1.2 Determination of Commerciality - 2.1.2.1 Discovered recoverable quantities (Contingent Resources) may be considered commercially mature, and thus attain Reserves classification, if the entity claiming commerciality has demonstrated a firm intention to proceed with development. This means the entity has satisfied the internal decision criteria (typically rate of return at or above the weighted average cost-of-capital or the hurdle rate). Commerciality is achieved with the entity's commitment to the project and all of the following criteria: - A. Evidence of a technically mature, feasible development plan. - B. Evidence of financial appropriations either being in place or having a high likelihood of being secured to implement the project. - C. Evidence to support a reasonable time-frame for development. - D. A reasonable assessment that the development projects will have positive economics and meet defined investment and operating criteria. This assessment is performed on the estimated entitlement forecast quantities and associated cash flow on which the investment decision is made (see Section 3.1.1, Net Cash-Flow Evaluation). - E. A reasonable expectation that there will be a market for forecast sales quantities of the production required to justify development. There should also be similar confidence that all produced streams (e.g., oil, gas, water, CO₂) can be sold, stored, re-injected, or otherwise appropriately disposed. - F. Evidence that the necessary production and transportation facilities are available or can be made available. - G. Evidence that legal, contractual, environmental, regulatory, and government approvals are in place or will be forthcoming, together with resolving any social and economic concerns. - 2.1.2.2 The commerciality test for Reserves determination is applied to the best estimate (P50) forecast quantities, which upon qualifying all commercial and technical maturity criteria and constraints become the *2P* Reserves. Stricter cases [e.g., low estimate (P90)] may be used for decision purposes or to investigate the range of commerciality (see Section 3.1.2, Economic Criteria). Typically, the low- and high-case project scenarios may be evaluated for sensitivities when considering project risk and upside opportunity. - 2.1.2.3 To be included in the Reserves class, a project must be sufficiently defined to establish both its technical and commercial viability as noted in Section 2.1.2.1. There must be a reasonable expectation that all required internal and external approvals will be forthcoming and evidence of firm intention to proceed with development within a reasonable time-frame. A reasonable time-frame for the initiation of development depends on the specific circumstances and varies according to the scope of the project. While five years is recommended as a benchmark, a longer time-frame could be applied where justifiable; for example, development of economic projects that take longer than five years to be developed or are deferred to meet contractual or strategic objectives. In all cases, the justification for classification as Reserves should be clearly documented. - 2.1.2.4 While PRMS guidelines require financial appropriations evidence, they do not require that project financing be confirmed before classifying projects as Reserves. However, this may be another external reporting requirement. In many cases, financing is conditional upon the same criteria as above. In general, if there is not a reasonable expectation that financing or other forms of commitment (e.g., farm-outs) can be arranged so that the development will be initiated within a reasonable time-frame, then the project should be classified as Contingent Resources. If financing is reasonably expected to be in place at the time of the final investment decision (FID), the project's resources may be classified as Reserves. #### 2.1.3 Project Status and Chance of Commerciality - 2.1.3.1 Evaluators have the option to establish a more detailed resources classification reporting system that can also provide the basis for portfolio management by subdividing the chance of commerciality axis according to project maturity. Such sub-classes may be characterized qualitatively by the project maturity level descriptions and associated quantitative chance of reaching commercial status and being placed on production. - 2.1.3.2 As a project moves to a higher level of commercial maturity in the
classification (see Figure 1.1 vertical axis), there will be an increasing chance that the accumulation will be commercially developed and the project quantities move to Reserves. For Contingent and Prospective Resources, this is further expressed as a chance of commerciality, P_c , which incorporates the following underlying chance component(s): - A. The chance that the potential accumulation will result in the discovery of a significant quantity of petroleum, which is called the "chance of geologic discovery," P_a . - B. Once discovered, the chance that the known accumulation will be commercially developed is called the "chance of development," P_d . - 2.1.3.3 There must be a high degree of certainty in the chance of commerciality, P_c , for Reserves to be assigned; for Contingent Resources, $P_c = P_d$; and for Prospective Resources, P_c is the product of P_g and P_d . - 2.1.3.4 Contingent and Prospective Resources can have different project scopes (e.g., well count, development spacing, and facility size) as development uncertainties and project definition mature. ### 2.1.3.5 Project Maturity Sub-Classes 2.1.3.5.1 As Figure 2.1 illustrates, development projects and associated recoverable quantities may be subclassified according to project maturity levels and the associated actions (i.e., business decisions) required to move a project toward commercial production. Figure 2.1—Sub-classes based on project maturity 2.1.3.5.2. Maturity terminology and definitions for each project maturity class and sub-class are provided in Table I. This approach supports the management of portfolios of opportunities at various stages of exploration, appraisal, and development. Reserve sub-classes must achieve commerciality while Contingent and Prospective Resources sub-classes may be supplemented by associated quantitative estimates of chance of commerciality to mature. - 2.1.3.5.3 Resources sub-class maturation is based on those actions that progress a project through final approvals to implementation and initiation of production and product sales. The boundaries between different levels of project maturity are frequently referred to as project "decision gates." - 2.1.3.5.4 Projects that are classified as Reserves must meet the criteria as listed in Section 2.1.2, Determination of Commerciality. Projects sub-classified as Justified for Development are agreed upon by the managing entity and partners as commercially viable and have support to advance the project, which includes a firm intent to proceed with development. All participating entities have agreed to the project and there are no known contingencies to the project from any official entity that will have to formally approve the project. - 2.1.3.5.5 Justified for Development Reserves are reclassified to Approved for Development after a FID has been made. Projects should not remain in the Justified for Development sub-class for extended time periods without positive indications that all required approvals are expected to be obtained without undue delay. If there is no longer the reasonable expectation of project execution (i.e., historical track record of execution, project progress), the project shall be reclassified as Contingent Resources. - 2.1.3.5.6 Projects classified as Contingent Resources have their sub-classes aligned with the entity's plan to manage its portfolio of projects. Thus, projects on known accumulations that are actively being studied, undergoing feasibility review, and have planned near-term operations (e.g., drilling) are placed in Contingent Resources Development Pending, while those that do not meet this test are placed into either Contingent Resources On Hold, Unclarified, or Not Viable. - 2.1.3.5.7 Where commercial factors change and there is a significant risk that a project with Reserves will no longer proceed, the project shall be reclassified as Contingent Resources. - 2.1.3.5.8 For Contingent Resources, evaluators should focus on gathering data and performing analyses to clarify and then mitigate those key conditions or contingencies that prevent commercial development. Note that the Contingent Resources sub-classes described above and shown in Figure 2.1 are recommended; however, entities are at liberty to introduce additional sub-classes that align with project management goals. - 2.1.3.5.9 For Prospective Resources, potential accumulations may mature from Play, to Lead and then to Prospect based on the ability to identify potentially commercially viable exploration projects. The Prospective Resources are evaluated according to chance of geologic discovery, P_g , and chance of development, P_d , which together determine the chance of commerciality, P_c . Commercially recoverable quantities under appropriate development projects are then estimated. The decision at each exploration phase is whether to undertake further data acquisition and/or studies designed to move the Play through to a drillable Prospect with a project description range commensurate with the Prospective Resources subclass. #### 2.1.3.6 Reserves Status - 2.1.3.6.1 Once projects satisfy commercial maturity (criteria given in Table 1), the associated quantities are classified as Reserves. These quantities may be allocated to the following subdivisions based on the funding and operational status of wells and associated facilities within the reservoir development plan (Table 2 provides detailed definitions and guidelines): - A. Developed Reserves are quantities expected to be recovered from existing wells and facilities. - 1. Developed Producing Reserves are expected to be recovered from completion intervals that are open and producing at the time of the estimate. - Developed Non-Producing Reserves include shut-in and behind-pipe reserves with minor costs to access. - B. Undeveloped Reserves are quantities expected to be recovered through future significant investments. - 2.1.3.6.2 The distinction between the "minor costs to access" Developed Non-Producing Reserves and the "significant investment" needed to develop Undeveloped Reserves requires the judgment of the evaluator taking into account the cost environment. A significant investment would be a relatively large expenditure when compared to the cost of drilling and completing a new well. A minor cost would be a lower expenditure when compared to the cost of drilling and completing a new well. - 2.1.3.6.3 Once a project passes the commercial assessment and achieves Reserves status, it is then included with all other Reserves projects of the same category in the same field for estimating combined future production and applying the economic limit test (see Section 3.1, Assessment of Commerciality). - 2.1.3.6.4 Where Reserves remain Undeveloped beyond a reasonable time-frame or have remained Undeveloped owing to postponements, evaluations should be critically reviewed to document reasons for the delay in initiating development and to justify retaining these quantities within the Reserves class. While there are specific circumstances where a longer delay (see Section 2.1.2, Determination of Commerciality) is justified, a reasonable time-frame to commence the project is generally considered to be less than five years from the initial classification date. - 2.1.3.6.5 Development and Production status are of significant importance for project portfolio management and financials. The Reserves status concept of Developed and Undeveloped status is based on the funding and operational status of wells and producing facilities within the development project. These status designations are applicable throughout the full range of Reserves uncertainty categories (1P, 2P, and 3P or Proved, Probable, and Possible). Even those projects that are Developed and On Production should have remaining uncertainty in recoverable quantities. #### 2.1.3.7 Economic Status - 2.1.3.7.1 Projects may be further characterized by economic status. All projects classified as Reserves must be commercial under defined conditions (see Section 3.1, Assessment of Commerciality Assessment). Based on assumptions regarding future conditions and the impact on ultimate economic viability, projects currently classified as Contingent Resources may be broadly divided into two groups: - **A.** Economically Viable Contingent Resources are those quantities associated with technically feasible projects where cash flows are positive under reasonably forecasted conditions but are not Reserves because it does not meet the commercial criteria defined in Section 2.1.2. - **B.** Economically Not Viable Contingent Resources are those quantities for which development projects are not expected to yield positive cash flows under reasonable forecast conditions. - 2.1.3.7.2 The best estimate (or P50) production forecast is typically used for the economic evaluation for the commercial assessment of the project. The low case, when used as the primary case for a project decision, may be used to determine project economics. The economic evaluation of the project high case alone is not permitted to be used in the determination of the project's commerciality. - 2.1.3.7.3 For Reserves, the best estimate production forecast reflects a specific development scenario recovery process, a certain number and type of wells, facilities, and infrastructure. - 2.1.3.7.4 The project's low-case scenario is tested to ensure it is economic, which is required for Proved Reserves to exist (see Section 2.2.2, Category Definitions and Guidelines). It is recommended to evaluate the low case and the high case (which will quantify the 3P Reserves) to convey the project downside risk and upside potential. The project development scenarios may vary in the number and type of wells, facilities, and infrastructure in Contingent Resources, but to recognize Reserves, there must exist the reasonable expectation to develop the project for the best-estimate case. - 2.1.3.7.5 The economic status may be
identified independently of, or applied in combination with, project maturity sub-classification to more completely describe the project. Economic status is not the only qualifier that allows defining Contingent or Prospective Resources sub-classes. Within Contingent Resources, applying the project status to decision gates (and/or incorporating them in a plan to execute) more appropriately defines whether the project is placed into the sub-class of either Development Pending versus On Hold, Not Viable, or Unclarified. - 2.1.3.7.6 Where evaluations are incomplete and it is premature to clearly define the associated cash flows, it is acceptable to note that the project economic status is "undetermined." # 2.2 Resources Categorization - 2.2.0.1 The horizontal axis in the resources classification in Figure 1.1 defines the range of uncertainty in estimates of the quantities of recoverable, or potentially recoverable, petroleum associated with a project or group of projects. These estimates include the uncertainty components as follows: - A. The total petroleum remaining within the accumulation (in-place resources). - B. The technical uncertainty in the portion of the total petroleum that can be recovered by applying a defined development project or projects (i.e., the technology applied). - C. Known variations in the commercial terms that may impact the quantities recovered and sold (e.g., market availability; contractual changes, such as production rate tiers or product quality specifications) are part of project's scope and are included in the horizontal axis, while the chance of satisfying the commercial terms is reflected in the classification (vertical axis). - 2.2.0.2 The uncertainty in a project's recoverable quantities is reflected by the 1P, 2P, 3P, Proved (P1), Probable (P2), Possible (P3), 1C, 2C, 3C, C1, C2, and C3; or 1U, 2U, and 3U resources categories. The commercial chance of success is associated with resources classes or sub-classes and not with the resources categories reflecting the range of recoverable quantities. - 2.2.0.3 There must be a single set of defined conditions applied for resource categorization. Use of different commercial assumptions for categorizing quantities is referred to as "split conditions" and are not allowed. Frequently, an entity will conduct project evaluation sensitivities to understand potential implications when making project selection decisions. Such sensitivities may be fully aligned to resource categories or may use single parameters, groups of parameters, or variances in the defined conditions. - 2.2.0.4 Moreover, a single project is uniquely assigned to a sub-class along with its uncertainty range. For example, a project cannot have quantities classified in both Contingent Resources and Reserves, for instance as 1C, 2P, and 3P. This is referred to as "split classification." #### 2.2.1 Range of Uncertainty 2.2.1.1 Uncertainty is inherent in a project's resources estimation and is communicated in PRMS by reporting a range of category outcomes. The range of uncertainty of the recoverable and/or potentially recoverable quantities may be represented by either deterministic scenarios or by a probability distribution (see Section 4.2, Resources Assessment Methods). - 2.2.1.2 When the range of uncertainty is represented by a probability distribution, a low, best, and high estimate shall be provided such that: - A. There should be at least a 90% probability (P90) that the quantities actually recovered will equal or exceed the low estimate. - B. There should be at least a 50% probability (P50) that the quantities actually recovered will equal or exceed the best estimate. - C. There should be at least a 10% probability (P10) that the quantities actually recovered will equal or exceed the high estimate. - 2.2.1.3 In some projects, the range of uncertainty may be limited, and the three scenarios may result in resources estimates that are not significantly different. In these situations, a single value estimate may be appropriate to describe the expected result. - 2.2.1.4 When using the deterministic scenario method, typically there should also be low, best, and high estimates, where such estimates are based on qualitative assessments of relative uncertainty using consistent interpretation guidelines. Under the deterministic incremental method, quantities for each confidence segment are estimated discretely (see Section 2.2.2, Category Definitions and Guidelines). - 2.2.1.5 Project resources are initially estimated using the above uncertainty range forecasts that incorporate the subsurface elements together with technical constraints related to wells and facilities. The technical forecasts then have additional commercial criteria applied (e.g., economics and license cutoffs are the most common) to estimate the entitlement quantities attributed and the resources classification status: Reserves, Contingent Resources, and Prospective Resources. - 2.2.1.6 While there may be significant chance that sub-commercial and undiscovered accumulations will not achieve commercial production, it is useful to consider the range of potentially recoverable quantities independent of such likelihood when considering what resources class to assign the project quantities. ## 2.2.2 Category Definitions and Guidelines - 2.2.2.1 Evaluators may assess recoverable quantities and categorize results by uncertainty using the deterministic incremental method, the deterministic scenario (cumulative) method, geostatistical methods, or probabilistic methods (see Section 4.2, Resources Assessment Methods). Also, combinations of these methods may be used. - 2.2.2.2 Use of consistent terminology (Figures 1.1 and 2.1) promotes clarity in communication of evaluation results. For Reserves, the general cumulative terms low/best/high forecasts are used to estimate the resulting 1P/2P/3P quantities, respectively. The associated incremental quantities are termed Proved (P1), Probable (P2) and Possible (P3). Reserves are a subset of, and must be viewed within the context of, the complete resources classification system. While the categorization criteria are proposed specifically for Reserves, in most cases, the criteria can be equally applied to Contingent and Prospective Resources. Upon satisfying the commercial maturity criteria for discovery and/or development, the project quantities will then move to the appropriate resources sub-class. Table 3 provides criteria for the Reserves categories determination. - 2.2.2.3 For Contingent Resources, the general cumulative terms low/best/high estimates are used to estimate the resulting 1C/2C/3C quantities, respectively. The terms C1, C2, and C3 are defined for incremental quantities of Contingent Resources. - 2.2.2.4 For Prospective Resources, the general cumulative terms low/best/high estimates also apply and are used to estimate the resulting 1U/2U/3U quantities. No specific terms are defined for incremental quantities within Prospective Resources. - 2.2.2.5 Quantities in different classes and sub-classes cannot be aggregated without considering the varying degrees of technical uncertainty and commercial likelihood involved with the classification(s) and without considering the degree of dependency between them (see Section 4.2.1, Aggregating Resources Classes). - 2.2.2.6 Without new technical information, there should be no change in the distribution of technically recoverable resources and the categorization boundaries when conditions are satisfied to reclassify a project from Contingent Resources to Reserves. - 2.2.2.7 All evaluations require application of a consistent set of forecast conditions, including assumed future costs and prices, for both classification of projects and categorization of estimated quantities recovered by each project (see Section 3.1, Assessment of Commerciality). - 2.2.2.8 Tables 1, 2, and 3 present category definitions and provide guidelines designed to promote consistency in resources assessments. The following summarize the definitions for each Reserves category in terms of both the deterministic incremental method and the deterministic scenario method, and also provides the criteria if probabilistic methods are applied. For all methods (incremental, scenario, or probabilistic), low, best and high estimate technical forecasts are prepared at an effective date (unless justified otherwise), then tested to validate the commercial criteria, and truncated as applicable for determination of Reserves quantities. - A. Proved Reserves are those quantities of Petroleum that, by analysis of geoscience and engineering data, can be estimated with reasonable certainty to be commercially recoverable from known reservoirs and under defined technical and commercial conditions. If deterministic methods are used, the term "reasonable certainty" is intended to express a high degree of confidence that the quantities will be recovered. If probabilistic methods are used, there should be at least a 90% probability that the quantities actually recovered will equal or exceed the estimate. - **B.** Probable Reserves are those additional Reserves which analysis of geoscience and engineering data indicate are less likely to be recovered than Proved Reserves but more certain to be recovered than Possible Reserves. It is equally likely that actual remaining quantities recovered will be greater than or less than the sum of the estimated Proved plus Probable Reserves (2P). In this context, when probabilistic methods are used, there should be at least a 50% probability that the actual quantities recovered will equal or exceed the 2P estimate. - C. Possible Reserves are those additional Reserves that analysis of geoscience and engineering data suggest are less likely to be recoverable than Probable Reserves. The total quantities ultimately recovered from the project have a low probability to exceed the sum of Proved plus Probable plus Possible (3P) Reserves, which is
equivalent to the high-estimate scenario. When probabilistic methods are used, there should be at least a 10% probability that the actual quantities recovered will equal or exceed the 3P estimate. Possible Reserves that are located outside of the 2P area (not upside quantities to the 2P scenario) may exist only when the commercial and technical maturity criteria have been met (that incorporate the Possible development scope). Standalone Possible Reserves must reference a commercial 2P project (e.g., a lease adjacent to the commercial project that may be owned by a separate entity), otherwise stand-alone Possible is not permitted. - 2.2.2.9 One, but not the sole, criterion for qualifying discovered resources and to categorize the project's range of its low/best/high or P90/P50/P10 estimates to either 1C/2C/3C or 1P/2P/3P is the distance away from known productive area(s) defined by the geoscience confidence in the subsurface. - 2.2.2.10 A conservative (low-case) estimate may be required to support financing. However, for project justification, it is generally the best-estimate Reserves or Resources quantity that passes qualification because it is considered the most realistic assessment of a project's recoverable quantities. The best estimate is generally considered to represent the sum of Proved and Probable estimates (2P) for Reserves, or 2C when Contingent Resources are cited, when aggregating a field, multiple fields, or an entity's resources. - 2.2.2.11 It should be noted that under the deterministic incremental method, discrete estimates are made for each category and should not be aggregated without due consideration of associated confidence. Results from the deterministic scenario, deterministic incremental, geostatistical and probabilistic methods applied to the same project should give comparable results (see Section 4.2, Resources Assessment Methods). If material differences exist between the results of different methods, the evaluator should be prepared to explain these differences. ## 2.3 Incremental Projects - 2.3.0.1 The initial resources assessment is based on application of a defined initial development project, even extending into Prospective Resources. Incremental projects are designed to either increase recovery efficiency, reduce costs, or accelerate production through either maintenance of or changes to wells, completions, or facilities or through infill drilling or by means of improved recovery. Such projects are classified according to the resources classification framework (Figure 1.1), with preference for applying project maturity sub-classes (Figure 2.1). Related incremental quantities are similarly categorized on the range of uncertainty of recovery. The projected recovery change can be included in Reserves if the degree of commitment is such that the project has achieved commercial maturity (See Section 2.1.2, Determination of Commerciality). The quantity of such incremental recovery must be supported by technical evidence to justify the relative confidence in the resources category assigned. - 2.3.0.2 An incremental project must have a defined development plan. A development plan may include projects targeting the entire field (or even multiple, linked fields), reservoirs, or single wells. Each incremental project will have its own planned timing for execution and resource quantities attributed to the project. Development plans may also include appraisal projects that will lead to subsequent project decisions based on appraisal outcomes. - 2.3.0.3 Circumstances when development will be significantly delayed and where it is considered that Reserves are still justified should be clearly documented. If there is no longer the reasonable expectation of project execution (i.e., historical track record of execution, project progress), forecast project incremental recoveries are to be reclassified as Contingent Resources (see Section 2.1.2, Determination of Commerciality). #### 2.3.1 Workovers, Treatments, and Changes of Equipment 2.3.1.1 Incremental recovery associated with a future workover, treatment (including hydraulic fracturing stimulation), re-treatment, changes to existing equipment, or other mechanical procedures where such projects have routinely been successful in analogous reservoirs may be classified as Developed Reserves, Undeveloped Reserves, or Contingent Resources, depending on the associated costs required (see Section 2.1.3.2, Reserves Status) and the status of the project's commercial maturity elements. 2.3.1.2 Facilities that are either beyond their operational life, placed out of service, or removed from service cannot be associated with Reserves recognition. When required facilities become unavailable or out of service for longer than a year, it may be necessary to reclassify the Developed Reserves to either Undeveloped Reserves or Contingent Resources. A project that includes facility replacement or restoration of operational usefulness must be identified, commensurate with the resources classification. ### 2.3.2 Compression 2.3.2.1 Reduction in the backpressure through compression can increase the portion of in-place gas that can be commercially produced and thus included in resources estimates. If the eventual installation of compression meets commercial maturity requirements, the incremental recovery is included in either Undeveloped Reserves or Developed Reserves, depending on the investment on meeting the Developed or Undeveloped classification criteria. However, if the cost to implement compression is not significant, relative to the cost of one new well in the field, or there is reasonable expectation that compression will be implemented by a third party in a common sales line beyond the reference point, the incremental quantities may be classified as Developed Reserves. If compression facilities were not part of the original approved development plan and such costs are significant, it should be treated as a separate project subject to normal project maturity criteria. ### 2.3.3 Infill Drilling 2.3.3.1 Technical and commercial analyses may support drilling additional producing wells to reduce the well spacing of the initial development plan, subject to government regulations. Infill drilling may have the combined effect of increasing recovery and accelerating production. Only the incremental recovery (i.e. recovery from infill wells less the recovery difference in earlier wells) can be considered as additional Reserves for the project; this incremental recovery may need to be reallocated. #### 2.3.4 Improved Recovery - 2.3.4.1 Improved recovery is the additional petroleum obtained, beyond primary recovery, from naturally occurring reservoirs by supplementing the natural reservoir energy. It includes secondary recovery (e.g., waterflooding and pressure maintenance), tertiary recovery processes (thermal, miscible gas injection, chemical injection, and other types), and any other means of supplementing natural reservoir recovery processes. - 2.3.4.2 Improved recovery projects must meet the same Reserves technical and commercial maturity criteria as primary recovery projects. - 2.3.4.3 The judgment on commerciality is based on pilot project results within the subject reservoir or by comparison to a reservoir with analogous rock and fluid properties and where a similar established improved recovery project has been successfully applied. - 2.3.4.4 Incremental recoveries through improved recovery methods that have yet to be established through routine, commercially successful applications are included as Reserves only after a favorable production response from the subject reservoir from either (a) a representative pilot or (b) an installed portion of the project, where the response provides support for the analysis on which the project is based. The improved recovery project's resources will remain classified as Contingent Resources Development Pending until the pilot has demonstrated both technical and commercial feasibility and the full project passes the Justified for Development "decision gate." #### 2.4 Unconventional Resources 2.4.0.1 The types of in-place petroleum resources defined as conventional and unconventional may require different evaluation approaches and/or extraction methods. However, the PRMS resources definitions, together with the classification system, apply to all types of petroleum accumulations regardless of the inplace characteristics, extraction method applied, or degree of processing required. - A. Conventional resources exist in porous and permeable rock with pressure equilibrium. The PIIP is trapped in discrete accumulations related to a local geological structure feature and/or stratigraphic condition. Each conventional accumulation is typically bounded by a down dip contact with an aquifer, as its position is controlled by hydrodynamic interactions between buoyancy of petroleum in water versus capillary force. The petroleum is recovered through wellbores and typically requires minimal processing before sale. - B. Unconventional resources exist in petroleum accumulations that are pervasive throughout a large area and are not significantly affected by hydrodynamic influences (also called "continuous-type deposit"). Usually there is not an obvious structural or stratigraphic trap. Examples include coalbed methane (CBM), basin-centered gas (low permeability), tight gas and tight oil (low permeability), gas hydrates, natural bitumen (very high viscosity oil), and oil shale (kerogen) deposits. Note that shale gas and shale oil are sub-types of tight gas and tight oil where the lithologies are predominantly shales or siltstones. These accumulations lack the porosity and permeability of conventional reservoirs required to flow without stimulation at economic rates. Typically, such accumulations require specialized extraction technology (e.g., dewatering of CBM, hydraulic fracturing stimulation for tight gas and tight oil, steam and/or
solvents to mobilize natural bitumen for in-situ recovery, and in some cases, surface mining of oil sands). Moreover, the extracted petroleum may require significant processing before sale (e.g., bitumen upgraders). - 2.4.0.2 For unconventional petroleum accumulations, reliance on continuous water contacts and pressure gradient analysis to interpret the extent of recoverable petroleum is not possible. Thus, there is typically a need for increased spatial sampling density to define uncertainty of in-place quantities, variations in reservoir and hydrocarbon quality, and to support design of specialized mining or in-situ extraction programs. In addition, unconventional resources typically require different evaluation techniques than conventional resources. - 2.4.0.3 Extrapolation of reservoir presence or productivity beyond a control point within a resources accumulation must not be assumed unless there is technical evidence to support it. Therefore, extrapolation beyond the immediate vicinity of a control point should be limited unless there is clear engineering and/or geoscience evidence to show otherwise. - 2.4.0.4 The extent of the discovery within a pervasive accumulation is based on the evaluator's reasonable confidence based on distances from existing experience, otherwise quantities remain as undiscovered. Where log and core data and nearby producing analogs provide evidence of potential economic viability, a successful well test may not be required to assign Contingent Resources. Pilot projects may be needed to define Reserves, which requires further evaluation of technical and commercial viability. - 2.4.0.5 A fundamental characteristic of engagement in a repetitive task is that it may improve performance over time. Attempts to quantify this improvement gave rise to the concept of the manufacturing progress function commonly called the "learning curve." The learning curve is characterized by a decrease in time and/or costs, usually in the early stages of a project when processes are being optimized. At that time, each new improvement may be significant. As the project matures, further improvements in time or cost savings are typically less substantial. In oil and gas developments with high well counts and a continuous program of activity (multi-year), the use of a learning curve within a resources evaluation may be justified to predict improvements in either the time taken to carry out the activity, the cost to do so, or both. While each development project is unique, review of analogs can provide guidance on such predictions and the range of associated uncertainty in the resulting recoverable resources estimates (see also Section 3.1.2 Economic Criteria).